{"title":"Advances in Molecular Docking Techniques for Targeting Protein Misfolding in Neurodegenerative Diseases.","authors":"Kuldeep Singh, Jeetendra Kumar Gupta, Shiv Narayan, Ketki Rani, Divya Jain, Prateek Porwal, Mukesh Chandra Sharma, Shivendra Kumar","doi":"10.2174/0113892010298545241108062449","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, represent a significant global health challenge with limited therapeutic options. Protein misfolding and aggregation, a common pathological hallmark in these disorders, have emerged as promising targets for therapeutic intervention. Molecular docking techniques have played a pivotal role in the identification and design of small molecules that can modulate protein misfolding, offering new hope for effective treatments. This review provides an overview of recent advancements in molecular docking techniques for targeting protein misfolding in neurodegenerative diseases. We discuss the principles and methodologies behind molecular docking, including various scoring functions and algorithms employed for accurate ligand-protein interactions. Additionally, we explore the use of molecular dynamics simulations and machine learning approaches to enhance the precision of docking studies. Furthermore, we highlight case studies and success stories where molecular docking has contributed to the discovery of potential drug candidates for neurodegenerative diseases. These include compounds that inhibit amyloid-β aggregation in Alzheimer's disease, α-synuclein oligomerisation in Parkinson's disease, and mutant huntingtin aggregation in Huntington's disease. We also discuss the problems and restrictions of molecular docking related to neurodegenerative diseases, such as how to accurately show the flexibility of proteins and why docking results need to be confirmed by experiments. We also discuss the structural biology methods, such as cryo-electron microscopy and X-ray crystallography, and how these techniques might help in improving molecular docking studies.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010298545241108062449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, represent a significant global health challenge with limited therapeutic options. Protein misfolding and aggregation, a common pathological hallmark in these disorders, have emerged as promising targets for therapeutic intervention. Molecular docking techniques have played a pivotal role in the identification and design of small molecules that can modulate protein misfolding, offering new hope for effective treatments. This review provides an overview of recent advancements in molecular docking techniques for targeting protein misfolding in neurodegenerative diseases. We discuss the principles and methodologies behind molecular docking, including various scoring functions and algorithms employed for accurate ligand-protein interactions. Additionally, we explore the use of molecular dynamics simulations and machine learning approaches to enhance the precision of docking studies. Furthermore, we highlight case studies and success stories where molecular docking has contributed to the discovery of potential drug candidates for neurodegenerative diseases. These include compounds that inhibit amyloid-β aggregation in Alzheimer's disease, α-synuclein oligomerisation in Parkinson's disease, and mutant huntingtin aggregation in Huntington's disease. We also discuss the problems and restrictions of molecular docking related to neurodegenerative diseases, such as how to accurately show the flexibility of proteins and why docking results need to be confirmed by experiments. We also discuss the structural biology methods, such as cryo-electron microscopy and X-ray crystallography, and how these techniques might help in improving molecular docking studies.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.