Developmental phylotranscriptomics in grapevine suggests an ancestral role of somatic embryogenesis.

IF 5.2 1区 生物学 Q1 BIOLOGY
Sara Koska, Dunja Leljak-Levanić, Nenad Malenica, Kian Bigović Villi, Momir Futo, Nina Čorak, Mateja Jagić, Ariana Ivanić, Anja Tušar, Niko Kasalo, Mirjana Domazet-Lošo, Kristian Vlahoviček, Tomislav Domazet-Lošo
{"title":"Developmental phylotranscriptomics in grapevine suggests an ancestral role of somatic embryogenesis.","authors":"Sara Koska, Dunja Leljak-Levanić, Nenad Malenica, Kian Bigović Villi, Momir Futo, Nina Čorak, Mateja Jagić, Ariana Ivanić, Anja Tušar, Niko Kasalo, Mirjana Domazet-Lošo, Kristian Vlahoviček, Tomislav Domazet-Lošo","doi":"10.1038/s42003-025-07712-w","DOIUrl":null,"url":null,"abstract":"<p><p>The zygotic embryogenesis of Arabidopsis, which is initiated by gamete fusion, shows hourglass-shaped ontogeny-phylogeny correlations at the transcriptome level. However, many plants are capable of yielding a fully viable next generation by somatic embryogenesis-a comparable developmental process that usually starts with the embryogenic induction of a diploid somatic cell. To explore the correspondence between ontogeny and phylogeny in this alternative developmental route in plants, here we develop a highly efficient model of somatic embryogenesis in grapevine (Vitis vinifera) and sequence its developmental transcriptomes. By combining the evolutionary properties of grapevine genes with their expression values, recovered from early induction to the formation of juvenile plants, we find a strongly supported hourglass-shaped developmental trajectory. However, in contrast to zygotic embryogenesis in Arabidopsis, where the torpedo stage is the most evolutionarily inert, in the somatic embryogenesis of grapevine, the heart stage expresses the most evolutionarily conserved transcriptome. This represents a surprising finding because it suggests a better evolutionary system-level analogy between animal development and plant somatic embryogenesis than zygotic embryogenesis. We conclude that macroevolutionary logic is deeply hardwired in plant ontogeny and that somatic embryogenesis is likely a primordial embryogenic program in plants.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"265"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07712-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The zygotic embryogenesis of Arabidopsis, which is initiated by gamete fusion, shows hourglass-shaped ontogeny-phylogeny correlations at the transcriptome level. However, many plants are capable of yielding a fully viable next generation by somatic embryogenesis-a comparable developmental process that usually starts with the embryogenic induction of a diploid somatic cell. To explore the correspondence between ontogeny and phylogeny in this alternative developmental route in plants, here we develop a highly efficient model of somatic embryogenesis in grapevine (Vitis vinifera) and sequence its developmental transcriptomes. By combining the evolutionary properties of grapevine genes with their expression values, recovered from early induction to the formation of juvenile plants, we find a strongly supported hourglass-shaped developmental trajectory. However, in contrast to zygotic embryogenesis in Arabidopsis, where the torpedo stage is the most evolutionarily inert, in the somatic embryogenesis of grapevine, the heart stage expresses the most evolutionarily conserved transcriptome. This represents a surprising finding because it suggests a better evolutionary system-level analogy between animal development and plant somatic embryogenesis than zygotic embryogenesis. We conclude that macroevolutionary logic is deeply hardwired in plant ontogeny and that somatic embryogenesis is likely a primordial embryogenic program in plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信