Heterogeneous thermal tolerance of dominant Andean montane tree species.

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Communications Earth & Environment Pub Date : 2025-01-01 Epub Date: 2025-02-17 DOI:10.1038/s43247-025-02083-w
Zorayda Restrepo, Sebastián González-Caro, Iain P Hartley, Juan Camilo Villegas, Patrick Meir, Adriana Sanchez, Daniel Ruiz Carrascal, Lina M Mercado
{"title":"Heterogeneous thermal tolerance of dominant Andean montane tree species.","authors":"Zorayda Restrepo, Sebastián González-Caro, Iain P Hartley, Juan Camilo Villegas, Patrick Meir, Adriana Sanchez, Daniel Ruiz Carrascal, Lina M Mercado","doi":"10.1038/s43247-025-02083-w","DOIUrl":null,"url":null,"abstract":"<p><p>In tropical montane forests, the Earth's largest biodiversity hotspots, there is increasing evidence that climate warming is resulting in montane species being displaced by their lowland counterparts. However, the drivers of these changes are poorly understood. Across a large elevation gradient in the Colombian Andes, we established three experimental plantations of 15 dominant tree species including both naturally occurring montane and lowland species and measured their survival and growth. Here we show that 55% of the studied montane species maintained growth at their survival's hottest temperature with the remaining 45% being intolerant to such levels of warming, declining their growth, while lowland species benefited strongly from the warmest temperatures. Our findings suggest that the direct negative effects of warming and increased competition of montane species with lowland species are promoting increased homogeneity in community composition, resulting in reduced biodiversity.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"117"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02083-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In tropical montane forests, the Earth's largest biodiversity hotspots, there is increasing evidence that climate warming is resulting in montane species being displaced by their lowland counterparts. However, the drivers of these changes are poorly understood. Across a large elevation gradient in the Colombian Andes, we established three experimental plantations of 15 dominant tree species including both naturally occurring montane and lowland species and measured their survival and growth. Here we show that 55% of the studied montane species maintained growth at their survival's hottest temperature with the remaining 45% being intolerant to such levels of warming, declining their growth, while lowland species benefited strongly from the warmest temperatures. Our findings suggest that the direct negative effects of warming and increased competition of montane species with lowland species are promoting increased homogeneity in community composition, resulting in reduced biodiversity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信