{"title":"Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'.","authors":"Hao Wang, Weike Zhou, Xia Wang, Yanni Xiao, Sanyi Tang, Biao Tang","doi":"10.1186/s12911-025-02920-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging infectious disease ('Disease X'), drawing lessons from the management of COVID-19 in China. We employ a dynamic model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% while the CFR would significantly increase to 1.065%. Therefore, in the face of a 'Disease X', the adaptive strategies should be guided by multiple factors, the 'zero-COVID-like' policy could be a feasible and effective way for the control of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new variant with much higher transmissibility, particularly when the population is at a high level of immunity.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"92"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02920-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging infectious disease ('Disease X'), drawing lessons from the management of COVID-19 in China. We employ a dynamic model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% while the CFR would significantly increase to 1.065%. Therefore, in the face of a 'Disease X', the adaptive strategies should be guided by multiple factors, the 'zero-COVID-like' policy could be a feasible and effective way for the control of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new variant with much higher transmissibility, particularly when the population is at a high level of immunity.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.