Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Hao Wang, Weike Zhou, Xia Wang, Yanni Xiao, Sanyi Tang, Biao Tang
{"title":"Modeling-based design of adaptive control strategy for the effective preparation of 'Disease X'.","authors":"Hao Wang, Weike Zhou, Xia Wang, Yanni Xiao, Sanyi Tang, Biao Tang","doi":"10.1186/s12911-025-02920-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging infectious disease ('Disease X'), drawing lessons from the management of COVID-19 in China. We employ a dynamic model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% while the CFR would significantly increase to 1.065%. Therefore, in the face of a 'Disease X', the adaptive strategies should be guided by multiple factors, the 'zero-COVID-like' policy could be a feasible and effective way for the control of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new variant with much higher transmissibility, particularly when the population is at a high level of immunity.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"92"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02920-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at exploring a general and adaptive control strategy to confront the rapid evolution of an emerging infectious disease ('Disease X'), drawing lessons from the management of COVID-19 in China. We employ a dynamic model incorporating age structures and vaccination statuses, which is calibrated using epidemic data. We therefore estimate the cumulative infection rate (CIR) during the first epidemic wave of Omicron variant after China relaxed its zero-COVID policy to be 82.9% (95% CI: 82.3%, 83.5%), with a case fatality rate (CFR) of 0.25% (95% CI: 0.248%, 0.253%). We further show that if the zero-COVID policy had been eased in January 2022, the CIR and CFR would have decreased to 81.64% and 0.205%, respectively, due to a higher level of immunity from vaccination. However, if we ease the zero-COVID policy during the circulation of Delta variant from June 2021, the CIR would decrease to 74.06% while the CFR would significantly increase to 1.065%. Therefore, in the face of a 'Disease X', the adaptive strategies should be guided by multiple factors, the 'zero-COVID-like' policy could be a feasible and effective way for the control of a variant with relative low transmissibility. However, we should ease the strategy as the virus matures into a new variant with much higher transmissibility, particularly when the population is at a high level of immunity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信