A deep learning approach: physics-informed neural networks for solving a nonlinear telegraph equation with different boundary conditions.

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
Alemayehu Tamirie Deresse, Alemu Senbeta Bekela
{"title":"A deep learning approach: physics-informed neural networks for solving a nonlinear telegraph equation with different boundary conditions.","authors":"Alemayehu Tamirie Deresse, Alemu Senbeta Bekela","doi":"10.1186/s13104-025-07142-1","DOIUrl":null,"url":null,"abstract":"<p><p>The nonlinear Telegraph equation appears in a variety of engineering and science problems. This paper presents a deep learning algorithm termed physics-informed neural networks to resolve a hyperbolic nonlinear telegraph equation with Dirichlet, Neumann, and Periodic boundary conditions. To include physical information about the issue, a multi-objective loss function consisting of the residual of the governing partial differential equation and initial conditions and boundary conditions is defined. Using multiple densely connected neural networks, termed feedforward deep neural networks, the proposed scheme has been trained to minimize the total loss results from the multi-objective loss function. Three computational examples are provided to demonstrate the efficacy and applications of our suggested method. Using a Python software package, we conducted several tests for various model optimizations, activation functions, neural network architectures, and hidden layers to choose the best hyper-parameters representing the problem's physics-informed neural network model with the optimal solution. Furthermore, using graphs and tables, the results of the suggested approach are contrasted with the analytical solution in literature based on various relative error analyses and statistical performance measure analyses. According to the results, the suggested computational method is effective in resolving difficult non-linear physical issues with various boundary conditions.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"77"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07142-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear Telegraph equation appears in a variety of engineering and science problems. This paper presents a deep learning algorithm termed physics-informed neural networks to resolve a hyperbolic nonlinear telegraph equation with Dirichlet, Neumann, and Periodic boundary conditions. To include physical information about the issue, a multi-objective loss function consisting of the residual of the governing partial differential equation and initial conditions and boundary conditions is defined. Using multiple densely connected neural networks, termed feedforward deep neural networks, the proposed scheme has been trained to minimize the total loss results from the multi-objective loss function. Three computational examples are provided to demonstrate the efficacy and applications of our suggested method. Using a Python software package, we conducted several tests for various model optimizations, activation functions, neural network architectures, and hidden layers to choose the best hyper-parameters representing the problem's physics-informed neural network model with the optimal solution. Furthermore, using graphs and tables, the results of the suggested approach are contrasted with the analytical solution in literature based on various relative error analyses and statistical performance measure analyses. According to the results, the suggested computational method is effective in resolving difficult non-linear physical issues with various boundary conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Research Notes
BMC Research Notes Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍: BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信