{"title":"Deciphering the flapping frequency allometry: Unveiling the role of sustained body attitude in the aerodynamic scaling of normal hovering animals.","authors":"Jeremy Pohly, Chang-Kwon Kang, Hikaru Aono","doi":"10.1242/bio.061932","DOIUrl":null,"url":null,"abstract":"<p><p>Hovering flight helps facilitate feeding, pollination, and courtship. Observed only for smaller flying animals, the hover kinematic characteristics are diverse except for the decreasing flapping frequency with the animal size. Although studies have shown that these wing patterns enable distinct unsteady aerodynamic mechanisms, the role of flapping frequency scaling remains a source of disagreement. Here we show that negative allometry of the flapping frequency is required to sustain body attitude during hovering, consistent with the experimental data of hovering animals from fruit flies to hummingbirds reported in the literature. The derived scaling model reveals that the lift coefficient and reduced frequency remain invariant with mass, enabling leading-edge vortex formation and wake-capture for a wide range of fliers to hover.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061932","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hovering flight helps facilitate feeding, pollination, and courtship. Observed only for smaller flying animals, the hover kinematic characteristics are diverse except for the decreasing flapping frequency with the animal size. Although studies have shown that these wing patterns enable distinct unsteady aerodynamic mechanisms, the role of flapping frequency scaling remains a source of disagreement. Here we show that negative allometry of the flapping frequency is required to sustain body attitude during hovering, consistent with the experimental data of hovering animals from fruit flies to hummingbirds reported in the literature. The derived scaling model reveals that the lift coefficient and reduced frequency remain invariant with mass, enabling leading-edge vortex formation and wake-capture for a wide range of fliers to hover.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.