{"title":"Abnormal purine metabolism in nasal epithelial cells affects allergic rhinitis by regulating Th17/Treg cells.","authors":"Ting Xu, Shitong Xia, Xingjie Zhang, Yixiao Yuan","doi":"10.1152/ajpcell.00873.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to explore novel pathogenesis in young children with allergic rhinitis (AR), and thus finding novel nasal spray reagents for them, especially under 4 yr old. In this study, nontargeted metabolomics analyses were used to explore the differential metabolites in nasal lavage fluid (NALF) of children with AR. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to assess cell proliferation and apoptosis in human nasal mucosal epithelial cells (HNEpCs). HNEpCs were cocultured with CD4<sup>+</sup> T cells, and flow cytometry was used to detect Th17/regulatory T (Treg) cells. RNA sequencing was used to assess the key pathways in xanthine-treated Jurkat T cells. Finally, both the in vitro and in vivo experiments were used to assess the effect of 1, 3-dipropyl-8 cyclopentylxanthine (DPCPX, Adora1 inhibitor) on activating transcription factor 4 (ATF4) expression and Th17/Treg cells. Xanthine and uric acid levels were increased in the NALF of children with AR. Xanthine dehydrogenase (XDH), purine nucleoside phosphatase (PNP), xanthine/hypoxanthine, and uric acid levels were elevated in Derp1-treated HNEpCs, and si-XDH reversed the reduced cell viability and increased cell apoptosis in Derp1-treated HNEpCs. Both xanthine and Derp1-treated HNEpCs increased the Th17/Treg ratio. The endoplasmic reticulum stress (ERS) pathway was affected in xanthine-treated Jurkat T cells, and ATF4 was markedly reduced in xanthine-treated Jurkat T cells. Xanthine exhibited no effect on Adora1 expression, whereas DPCPX elevated ATF4 expression and reduced the Th17/Treg ratio in xanthine-treated Jurkat T cells. The in vitro experiments revealed that DPCPX reduced inflammatory infiltration, Th17/Treg ratio, interleukin (IL)-17, tumor necrosis factor (TNF)-α, and IL-6 in AR mice. These results demonstrated that xanthine inhibited ATF4 expression via Adora1 to elevate the Th17/Treg ratio in the nasal cavity, thus participating in AR progression. These findings may provide novel therapeutic interventions for young children with AR.<b>NEW & NOTEWORTHY</b> Current nasal spray hormones exhibited some adverse reactions for young children with allergic rhinitis (AR), and there were no suitable nasal spray hormones for children with AR under 4 yr old. This study emphasized the important role of purine metabolism in the nasal cavity in children with AR and provided novel therapeutic interventions for children with AR.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1193-C1205"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00873.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to explore novel pathogenesis in young children with allergic rhinitis (AR), and thus finding novel nasal spray reagents for them, especially under 4 yr old. In this study, nontargeted metabolomics analyses were used to explore the differential metabolites in nasal lavage fluid (NALF) of children with AR. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to assess cell proliferation and apoptosis in human nasal mucosal epithelial cells (HNEpCs). HNEpCs were cocultured with CD4+ T cells, and flow cytometry was used to detect Th17/regulatory T (Treg) cells. RNA sequencing was used to assess the key pathways in xanthine-treated Jurkat T cells. Finally, both the in vitro and in vivo experiments were used to assess the effect of 1, 3-dipropyl-8 cyclopentylxanthine (DPCPX, Adora1 inhibitor) on activating transcription factor 4 (ATF4) expression and Th17/Treg cells. Xanthine and uric acid levels were increased in the NALF of children with AR. Xanthine dehydrogenase (XDH), purine nucleoside phosphatase (PNP), xanthine/hypoxanthine, and uric acid levels were elevated in Derp1-treated HNEpCs, and si-XDH reversed the reduced cell viability and increased cell apoptosis in Derp1-treated HNEpCs. Both xanthine and Derp1-treated HNEpCs increased the Th17/Treg ratio. The endoplasmic reticulum stress (ERS) pathway was affected in xanthine-treated Jurkat T cells, and ATF4 was markedly reduced in xanthine-treated Jurkat T cells. Xanthine exhibited no effect on Adora1 expression, whereas DPCPX elevated ATF4 expression and reduced the Th17/Treg ratio in xanthine-treated Jurkat T cells. The in vitro experiments revealed that DPCPX reduced inflammatory infiltration, Th17/Treg ratio, interleukin (IL)-17, tumor necrosis factor (TNF)-α, and IL-6 in AR mice. These results demonstrated that xanthine inhibited ATF4 expression via Adora1 to elevate the Th17/Treg ratio in the nasal cavity, thus participating in AR progression. These findings may provide novel therapeutic interventions for young children with AR.NEW & NOTEWORTHY Current nasal spray hormones exhibited some adverse reactions for young children with allergic rhinitis (AR), and there were no suitable nasal spray hormones for children with AR under 4 yr old. This study emphasized the important role of purine metabolism in the nasal cavity in children with AR and provided novel therapeutic interventions for children with AR.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.