{"title":"Development of an enhanced anti-pan-N-formylmethionine-specific antibody.","authors":"Dasom Kim, Kyu-Sang Park, Cheol-Sang Hwang","doi":"10.1080/07366205.2025.2467583","DOIUrl":null,"url":null,"abstract":"<p><p>Both bacterial and eukaryotic ribosomes can initiate protein synthesis with formylmethionine (fMet), but detecting fMet-bearing peptides and fMet-bearing proteins has been challenging due to the lack of effective anti-pan-fMet antibodies. Previously, we developed a polyclonal anti-fMet antibody using a fMet-Gly-Ser-Gly-Cys pentapeptide that detects those fMet-bearing peptides and fMet-bearing proteins regardless of their sequence context. In this study, we significantly improved the antibody's specificity and affinity by using a mixture of fMet-Xaa-Cys tripeptides (Xaa, any of the 20 amino acids) as the immunogen. This newly optimized anti-fMet antibody is a powerful, cost-effective tool for detecting fMet-bearing proteins across species. Furthermore, this approach provides a foundation for developing anti-pan-specific antibodies targeting other N-terminal modifications through acylation, alkylation, oxidation, arginylation, etc.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":" ","pages":"1-10"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07366205.2025.2467583","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Both bacterial and eukaryotic ribosomes can initiate protein synthesis with formylmethionine (fMet), but detecting fMet-bearing peptides and fMet-bearing proteins has been challenging due to the lack of effective anti-pan-fMet antibodies. Previously, we developed a polyclonal anti-fMet antibody using a fMet-Gly-Ser-Gly-Cys pentapeptide that detects those fMet-bearing peptides and fMet-bearing proteins regardless of their sequence context. In this study, we significantly improved the antibody's specificity and affinity by using a mixture of fMet-Xaa-Cys tripeptides (Xaa, any of the 20 amino acids) as the immunogen. This newly optimized anti-fMet antibody is a powerful, cost-effective tool for detecting fMet-bearing proteins across species. Furthermore, this approach provides a foundation for developing anti-pan-specific antibodies targeting other N-terminal modifications through acylation, alkylation, oxidation, arginylation, etc.
期刊介绍:
BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies.
Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers:
Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions
Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices
Surveys of technical approaches related to broad fields of research
Reviews discussing advancements in techniques and methods related to broad fields of research
Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.