Antibody-level Bacteria Grabbing by "Mechanic Invasion" of Bioinspired Hedgehog Artificial Mesoporous Nanostructure for Hierarchical Dynamic Identification and Light-Response Sterilization.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sijie Liu, Rui Shu, Huilin Jia, Kexin Wang, Biao Wang, Jiayi Zhang, Jing Sun, Nosirjon Sattorov, Kamoljon Burkhonovich Makhmudov, Maojun Jin, Jianlong Wang
{"title":"Antibody-level Bacteria Grabbing by \"Mechanic Invasion\" of Bioinspired Hedgehog Artificial Mesoporous Nanostructure for Hierarchical Dynamic Identification and Light-Response Sterilization.","authors":"Sijie Liu, Rui Shu, Huilin Jia, Kexin Wang, Biao Wang, Jiayi Zhang, Jing Sun, Nosirjon Sattorov, Kamoljon Burkhonovich Makhmudov, Maojun Jin, Jianlong Wang","doi":"10.1002/adma.202416906","DOIUrl":null,"url":null,"abstract":"<p><p>The interactions exploration between microorganisms and nanostructures are pivotal steps toward advanced applications, but the antibody-level bacteria grabbing is limited by the poor understanding of interface identification mechanisms in small-sized systems. Herein, the de novo design of a bioinspired hedgehog artificial mesoporous nanostructure (core-shell mesoporous Au@Pt (mAPt)) are proposed to investigate the association between the topography design and efficient bacteria grabbing. These observations indicate that virus-like spiky topography compensates for the obstacles faced by small-sized materials for bacteria grabbing, including the lack of requisite microscopic cavities and sufficient contact area. Molecular dynamics simulation reveals that spiky topography with heightened mechano-invasiveness (6.56 × 10<sup>3</sup> KJ mol<sup>-1</sup>) facilitates antibody-level bacteria grabbing, attributed to the \"mechanic invasion\"-induced hierarchical dynamic identification ranging from rough surface contact to penetration fixation. Furthermore, light reflectance and finite element calculation confirmed that mAPt exhibits near-superblack characteristic and plasmonic hot spot, facilitating enhanced photothermal conversion with power dissipation density at 2.04 × 10<sup>21</sup> W m<sup>-3</sup>. After integrating the hierarchical dynamic identification with enhanced light response, mAPt enables advanced applications in immunoassay with 50-fold sensitivity enhancement and over 99.99% in vitro photothermal sterilization. It is anticipated that this novel biomimetic design provides a deeper understanding of bacteria grabbing and a promising paradigm for bacteria combating.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2416906"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416906","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interactions exploration between microorganisms and nanostructures are pivotal steps toward advanced applications, but the antibody-level bacteria grabbing is limited by the poor understanding of interface identification mechanisms in small-sized systems. Herein, the de novo design of a bioinspired hedgehog artificial mesoporous nanostructure (core-shell mesoporous Au@Pt (mAPt)) are proposed to investigate the association between the topography design and efficient bacteria grabbing. These observations indicate that virus-like spiky topography compensates for the obstacles faced by small-sized materials for bacteria grabbing, including the lack of requisite microscopic cavities and sufficient contact area. Molecular dynamics simulation reveals that spiky topography with heightened mechano-invasiveness (6.56 × 103 KJ mol-1) facilitates antibody-level bacteria grabbing, attributed to the "mechanic invasion"-induced hierarchical dynamic identification ranging from rough surface contact to penetration fixation. Furthermore, light reflectance and finite element calculation confirmed that mAPt exhibits near-superblack characteristic and plasmonic hot spot, facilitating enhanced photothermal conversion with power dissipation density at 2.04 × 1021 W m-3. After integrating the hierarchical dynamic identification with enhanced light response, mAPt enables advanced applications in immunoassay with 50-fold sensitivity enhancement and over 99.99% in vitro photothermal sterilization. It is anticipated that this novel biomimetic design provides a deeper understanding of bacteria grabbing and a promising paradigm for bacteria combating.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信