Yichen Ding, Dan Huang, Yao Wang, Xin Zhao, Ran Han, Mingkun Tang, Baohua Li, Dong Zhou, Feiyu Kang
{"title":"“Water-In-Oil” Electrolyte Enabled by Microphase Separation Regulation for Highly Reversible Zinc Metal Anode","authors":"Yichen Ding, Dan Huang, Yao Wang, Xin Zhao, Ran Han, Mingkun Tang, Baohua Li, Dong Zhou, Feiyu Kang","doi":"10.1002/adma.202419221","DOIUrl":null,"url":null,"abstract":"<p>The sustained hydrogen evolution and zinc (Zn) dendrite growth greatly impede the practical application of low-cost aqueous Zn metal batteries (ZMBs). Herein, for the first time, a microphase separation strategy is proposed to construct a ″water-in-oil (W/O) electrolyte to endow durable ZMBs. As validated by theoretical modeling and experimental characterizations, the unique reverse micelle structure within the electrolyte not only disrupts water hydrogen bonding and efficiently inhibits the water consumption at Zn anode, but also undergoes directed movement and reversible demulsification under electric field, thus enhancing the anode desolvation kinetics and inhibiting the interfacial side reactions. Owing to the simultaneous regulation of water molecules in both electrolyte bulk and anode interface, this W/O electrolyte achieves a high Zn plating/stripping Coulombic efficiency of 99.76% over 6000 cycles, and maintains an extend lifespan in Zn||V<sub>10</sub>O<sub>24</sub>·12H<sub>2</sub>O (VOH) cells with negligible hydrogen evolution and dendrite formation. These key findings are expected to promote the electrolyte engineering toward reversible ZMBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 14","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202419221","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sustained hydrogen evolution and zinc (Zn) dendrite growth greatly impede the practical application of low-cost aqueous Zn metal batteries (ZMBs). Herein, for the first time, a microphase separation strategy is proposed to construct a ″water-in-oil (W/O) electrolyte to endow durable ZMBs. As validated by theoretical modeling and experimental characterizations, the unique reverse micelle structure within the electrolyte not only disrupts water hydrogen bonding and efficiently inhibits the water consumption at Zn anode, but also undergoes directed movement and reversible demulsification under electric field, thus enhancing the anode desolvation kinetics and inhibiting the interfacial side reactions. Owing to the simultaneous regulation of water molecules in both electrolyte bulk and anode interface, this W/O electrolyte achieves a high Zn plating/stripping Coulombic efficiency of 99.76% over 6000 cycles, and maintains an extend lifespan in Zn||V10O24·12H2O (VOH) cells with negligible hydrogen evolution and dendrite formation. These key findings are expected to promote the electrolyte engineering toward reversible ZMBs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.