{"title":"Facilitating multiple nitrite for anammox process directly treating municipal wastewater: Optimized organics utilization and microbial composition.","authors":"Wanyi Feng, Qiong Zhang, Jialin Li, Jinjin Liu, Chenxue Duan, Yi Peng, Yongzhen Peng","doi":"10.1016/j.jenvman.2025.124460","DOIUrl":null,"url":null,"abstract":"<p><p>While direct anammox implementation is attractive when treating wastewater, nitrite (NO<sub>2</sub><sup>-</sup>-N) availability and excess organic matter significantly limit its practical application. This study proposed partial nitrification and endogenous partial denitrification/anammox (PN/A-EPD/A) for the treatment of real municipal wastewater (COD/N ratio: 2.8) within a single-stage reactor under anaerobic/aerobic/anoxic mode. Interestingly, with reducing dissolved oxygen concentration (5.0 ± 1.0 → 1.0 ± 0.5 mg-O<sub>2</sub>/L) during aerobic phase, Comammox Nitrospira clade A became dominated and introduced vast nitrate (NO<sub>3</sub><sup>-</sup>-N) into the subsequent anoxic stage. Both in-situ and ex-situ tests confirmed that sufficient NO<sub>3</sub><sup>-</sup>-N as electron acceptors were in favor of the EPD/A occurrence with endogenous organics utilization, which was obtained by anaerobic endogenous transformation. Metagenomic results confirmed the role of Thauera in facilitating NO<sub>3</sub><sup>-</sup>-N→NO<sub>2</sub><sup>-</sup>-N process, and further supporting AnAOB. As a result, Ca. Brocadia gradually enriched on granules (from 0.08% to 3.51%) and contributed up to 51.5 % to total inorganic nitrogen removal through the PN/A-EPD/A process. Optimized carbon utilization pathway promoted the re-cooperative balance of microorganisms and this process achieved efficient nitrogen removal (93.5%) and desirable quality of effluent (3.2 mg-N/L) when treating real municipal wastewater.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124460"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124460","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While direct anammox implementation is attractive when treating wastewater, nitrite (NO2--N) availability and excess organic matter significantly limit its practical application. This study proposed partial nitrification and endogenous partial denitrification/anammox (PN/A-EPD/A) for the treatment of real municipal wastewater (COD/N ratio: 2.8) within a single-stage reactor under anaerobic/aerobic/anoxic mode. Interestingly, with reducing dissolved oxygen concentration (5.0 ± 1.0 → 1.0 ± 0.5 mg-O2/L) during aerobic phase, Comammox Nitrospira clade A became dominated and introduced vast nitrate (NO3--N) into the subsequent anoxic stage. Both in-situ and ex-situ tests confirmed that sufficient NO3--N as electron acceptors were in favor of the EPD/A occurrence with endogenous organics utilization, which was obtained by anaerobic endogenous transformation. Metagenomic results confirmed the role of Thauera in facilitating NO3--N→NO2--N process, and further supporting AnAOB. As a result, Ca. Brocadia gradually enriched on granules (from 0.08% to 3.51%) and contributed up to 51.5 % to total inorganic nitrogen removal through the PN/A-EPD/A process. Optimized carbon utilization pathway promoted the re-cooperative balance of microorganisms and this process achieved efficient nitrogen removal (93.5%) and desirable quality of effluent (3.2 mg-N/L) when treating real municipal wastewater.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.