Wireframe DNA Origami Capable of Vertex-protruding Transformation.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-02-19 DOI:10.1002/cbic.202401071
Yosuke Ochi, Wataru Kato, Yoichi Tsutsui, Yuki Gomibuchi, Daichi Tominaga, Keisuke Sakai, Takeshi Araki, Suzunosuke Yoshitake, Takuo Yasunaga, Yusuke V Morimoto, Kazuhiro Maeda, Junichi Taira, Yusuke Sato
{"title":"Wireframe DNA Origami Capable of Vertex-protruding Transformation.","authors":"Yosuke Ochi, Wataru Kato, Yoichi Tsutsui, Yuki Gomibuchi, Daichi Tominaga, Keisuke Sakai, Takeshi Araki, Suzunosuke Yoshitake, Takuo Yasunaga, Yusuke V Morimoto, Kazuhiro Maeda, Junichi Taira, Yusuke Sato","doi":"10.1002/cbic.202401071","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating dynamic behavior of the designed molecular structures provides a foundation for the construction of functional molecular devices. DNA nanotechnology allows conformational changes in two-dimensional and three-dimensional DNA origami nanostructures by introducing flexibility between the faces of the structures. However, dynamic transformations in wireframe DNA origami, composed solely of vertices and edges, remain challenging due to vertex-specific flexibility. We report a wireframe DNA origami capable of vertex-protruding transformation between the open- and closed-form with eight protruding vertices. This reversible transformation is driven by DNA hybridization and a toehold-mediated strand displacement reaction. Spacer strands between vertices and edges were designed to introduce flexibility. Coarse-grained molecular dynamics simulations demonstrated that a longer spacer increases conformational flexibility and can achieve the narrow angles required for the vertex-protruding transformation. The experimental results showed the successful assembly of the open-form structure under optimized salt conditions, as visualized through transmission electron microscopy images. Furthermore, the transformation between the open- and closed-form structures was demonstrated by the sequential addition of signal strands. This vertex-protruding transformation mechanism will expand the design approach of dynamic DNA nanostructures and help develop functional molecular devices for artificial molecular systems.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202401071"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating dynamic behavior of the designed molecular structures provides a foundation for the construction of functional molecular devices. DNA nanotechnology allows conformational changes in two-dimensional and three-dimensional DNA origami nanostructures by introducing flexibility between the faces of the structures. However, dynamic transformations in wireframe DNA origami, composed solely of vertices and edges, remain challenging due to vertex-specific flexibility. We report a wireframe DNA origami capable of vertex-protruding transformation between the open- and closed-form with eight protruding vertices. This reversible transformation is driven by DNA hybridization and a toehold-mediated strand displacement reaction. Spacer strands between vertices and edges were designed to introduce flexibility. Coarse-grained molecular dynamics simulations demonstrated that a longer spacer increases conformational flexibility and can achieve the narrow angles required for the vertex-protruding transformation. The experimental results showed the successful assembly of the open-form structure under optimized salt conditions, as visualized through transmission electron microscopy images. Furthermore, the transformation between the open- and closed-form structures was demonstrated by the sequential addition of signal strands. This vertex-protruding transformation mechanism will expand the design approach of dynamic DNA nanostructures and help develop functional molecular devices for artificial molecular systems.

能够顶点突出转换的线框DNA折纸。
调节所设计分子结构的动力学行为为构建功能分子器件提供了基础。DNA纳米技术允许二维和三维DNA折纸纳米结构的构象变化,通过引入结构面之间的灵活性。然而,线框DNA折纸中的动态转换,仅由顶点和边缘组成,由于顶点特定的灵活性,仍然具有挑战性。我们报告了一个线框DNA折纸能够顶点突出转换之间的开放和封闭形式与八个突出的顶点。这种可逆转化是由DNA杂交和一个支点介导的链位移反应驱动的。在顶点和边缘之间设计间隔线以引入灵活性。粗粒度分子动力学模拟表明,较长的间隔可以增加构象灵活性,并可以实现顶点突出转换所需的窄角度。实验结果表明,在优化的盐条件下,开放式结构的成功组装,如透射电镜图像所示。此外,通过信号链的顺序相加证明了开放和封闭结构之间的转换。这种顶点突出转化机制将扩展动态DNA纳米结构的设计方法,并有助于开发人工分子系统的功能分子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信