Maciej Barłóg, Santhosh Kumar Podiyanachari, Hassan S Bazzi, Mohammed Al-Hashimi
{"title":"Advances in Π-Conjugated Benzothiazole and Benzoxazole-Boron Complexes: Exploring Optical and Biomaterial Applications.","authors":"Maciej Barłóg, Santhosh Kumar Podiyanachari, Hassan S Bazzi, Mohammed Al-Hashimi","doi":"10.1002/marc.202400914","DOIUrl":null,"url":null,"abstract":"<p><p>This mini-review highlights the transformative potential of benzothiazole (BTz)- and benzoxazole (BOz)-based boron-complexed dyes. It represents an innovative evolution of the classic boron-dipyrromethene (BODIPY) structure, which is well established for its superior photophysical properties. Incorporating BTz- or BOz-ligands into the borane (-BR<sub>2</sub>) component, originates more electron-deficient architecture, enabling novel modes of complexation and addressing limitations such as spectral overlap and self-quenching in traditional BODIPY dyes. The review focuses on the remarkable versatility of boron-benzothiazole (BOBTz)- and boron-benzoxazole (BOBOz)-based complexes, particularly in three rapidly advancing fields: organic light emitting diode (LED) technology, bioimaging, and mechanochromic luminescence (MCL). Over the past 15 years, these complexes have demonstrated exceptional adaptability, showcasing enhanced properties like high fluorescence quantum yields, large molar extinction coefficients, and tunable emissions across visible and near-infrared spectra. The insights described in this review highlight the major role of BOBTz- and BOBOz-complexes in shaping innovative, and sustainable advanced materials while addressing emerging challenges in modern materials science. Besides, the refining of both BOBTz- and BOBOz-complexes offers exciting prospects for technological challenges such as energy-efficient lighting, non-invasive imaging, and creating stimuli-responsive materials for next-generation sensors. Moreover, the environmental sustainability of these materials, including green synthesis approaches and recyclable components represents an important frontier for future exploration.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400914"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400914","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This mini-review highlights the transformative potential of benzothiazole (BTz)- and benzoxazole (BOz)-based boron-complexed dyes. It represents an innovative evolution of the classic boron-dipyrromethene (BODIPY) structure, which is well established for its superior photophysical properties. Incorporating BTz- or BOz-ligands into the borane (-BR2) component, originates more electron-deficient architecture, enabling novel modes of complexation and addressing limitations such as spectral overlap and self-quenching in traditional BODIPY dyes. The review focuses on the remarkable versatility of boron-benzothiazole (BOBTz)- and boron-benzoxazole (BOBOz)-based complexes, particularly in three rapidly advancing fields: organic light emitting diode (LED) technology, bioimaging, and mechanochromic luminescence (MCL). Over the past 15 years, these complexes have demonstrated exceptional adaptability, showcasing enhanced properties like high fluorescence quantum yields, large molar extinction coefficients, and tunable emissions across visible and near-infrared spectra. The insights described in this review highlight the major role of BOBTz- and BOBOz-complexes in shaping innovative, and sustainable advanced materials while addressing emerging challenges in modern materials science. Besides, the refining of both BOBTz- and BOBOz-complexes offers exciting prospects for technological challenges such as energy-efficient lighting, non-invasive imaging, and creating stimuli-responsive materials for next-generation sensors. Moreover, the environmental sustainability of these materials, including green synthesis approaches and recyclable components represents an important frontier for future exploration.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.