Seunghee H Cho, Soongwon Cho, Zengyao Lv, Yurina Sekine, Shanliangzi Liu, Mingyu Zhou, Ravi F Nuxoll, Evangelos E Kanatzidis, Roozbeh Ghaffari, Donghwan Kim, Yonggang Huang, John A Rogers
{"title":"Soft, wearable, microfluidic system for fluorometric analysis of loss of amino acids through eccrine sweat.","authors":"Seunghee H Cho, Soongwon Cho, Zengyao Lv, Yurina Sekine, Shanliangzi Liu, Mingyu Zhou, Ravi F Nuxoll, Evangelos E Kanatzidis, Roozbeh Ghaffari, Donghwan Kim, Yonggang Huang, John A Rogers","doi":"10.1039/d4lc00734d","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acids are essential for protein synthesis and metabolic processes in support of homeostatic balance and healthy body functions. This study quantitatively investigates eccrine sweat as a significant channel for loss of amino acids during exercise, to improve an understanding of amino acid turnover and to provide feedback to users on the need for supplement intake. The measurement platform consists of a soft, skin-interfaced microfluidic system for real-time analysis of amino acid content in eccrine sweat. This system relies on integrated fluorometric assays and smartphone-based imaging techniques for quantitative analysis, as a simple, cost-effective approach that does not require electrochemical sensors, electronics or batteries. Human subject studies reveal substantial amino acid losses in sweat from working muscle regions during prolonged physical activities, thereby motivating the need for dietary supplementation. The findings suggest potential applications in healthcare, particularly in athletic and clinical settings, where maintaining amino acid balance is critical for ensuring proper homeostasis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00734d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Amino acids are essential for protein synthesis and metabolic processes in support of homeostatic balance and healthy body functions. This study quantitatively investigates eccrine sweat as a significant channel for loss of amino acids during exercise, to improve an understanding of amino acid turnover and to provide feedback to users on the need for supplement intake. The measurement platform consists of a soft, skin-interfaced microfluidic system for real-time analysis of amino acid content in eccrine sweat. This system relies on integrated fluorometric assays and smartphone-based imaging techniques for quantitative analysis, as a simple, cost-effective approach that does not require electrochemical sensors, electronics or batteries. Human subject studies reveal substantial amino acid losses in sweat from working muscle regions during prolonged physical activities, thereby motivating the need for dietary supplementation. The findings suggest potential applications in healthcare, particularly in athletic and clinical settings, where maintaining amino acid balance is critical for ensuring proper homeostasis.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.