{"title":"Photocatalytic Conversion of Polyester-Derived Alcohol into Value-Added Chemicals by Engineering Atomically Dispersed Pd Catalyst.","authors":"Wenjing Zhang, Xuewei Hao, Xinlin Liu, Mingyu Chu, Shengming Li, Xuchun Wang, Feng Jiang, Lu Wang, Qiao Zhang, Jinxing Chen, Dingsheng Wang, Muhan Cao","doi":"10.1002/anie.202500814","DOIUrl":null,"url":null,"abstract":"<p><p>Photoreforming presents a promising strategy for upcycling waste polyester-derived alcohol into valuable chemicals. However, it remains a great challenge due to its low performance and unsatisfactory selectivity toward high-value C2 products. Here, we report the highly efficient and selective conversion of ethylene glycol (EG, a monomer of polyethylene terephthalate (PET)) to glycolaldehyde using atomically dispersed Pd species supported on TiO2 catalyst. A glycolaldehyde production rate of 5072 μmol gcat-1 h-1 with a selectivity of 90.0% and long-term durability can be achieved. Experimental and theoretical results show that Pd single atoms can enhance the photocatalytic activity by enriching the photogenerated holes, which are the dominant species for the selective oxidation of EG to glycolaldehyde. More importantly, the adsorption of EG molecules on the catalysts is significantly promoted, which is subsequently transformed into RO• radicals, a crucial intermediate in producing glycolaldehyde. Additionally, Pd single atoms on TiO2 enable the reduction of the glycolaldehyde desorption barrier, thereby facilitating high selectivity and inhibiting further oxidation to C1 products. This work provides new insights into the photocatalytic conversion of polyester wastes by atomic engineering.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202500814"},"PeriodicalIF":16.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500814","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoreforming presents a promising strategy for upcycling waste polyester-derived alcohol into valuable chemicals. However, it remains a great challenge due to its low performance and unsatisfactory selectivity toward high-value C2 products. Here, we report the highly efficient and selective conversion of ethylene glycol (EG, a monomer of polyethylene terephthalate (PET)) to glycolaldehyde using atomically dispersed Pd species supported on TiO2 catalyst. A glycolaldehyde production rate of 5072 μmol gcat-1 h-1 with a selectivity of 90.0% and long-term durability can be achieved. Experimental and theoretical results show that Pd single atoms can enhance the photocatalytic activity by enriching the photogenerated holes, which are the dominant species for the selective oxidation of EG to glycolaldehyde. More importantly, the adsorption of EG molecules on the catalysts is significantly promoted, which is subsequently transformed into RO• radicals, a crucial intermediate in producing glycolaldehyde. Additionally, Pd single atoms on TiO2 enable the reduction of the glycolaldehyde desorption barrier, thereby facilitating high selectivity and inhibiting further oxidation to C1 products. This work provides new insights into the photocatalytic conversion of polyester wastes by atomic engineering.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.