New Experimental Approach for the Proper Consideration of Stagnant and Diffuse Layer Conductivity in the Zeta Potential Determination.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Matthias Frangenberg, Annette M Schmidt, Jan Wilkens
{"title":"New Experimental Approach for the Proper Consideration of Stagnant and Diffuse Layer Conductivity in the Zeta Potential Determination.","authors":"Matthias Frangenberg, Annette M Schmidt, Jan Wilkens","doi":"10.1021/acs.langmuir.4c04456","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate determination of the zeta potential in colloidal dispersions often requires consideration of the relaxation effect, which is associated with the polarization of the electrical double layer and the surface conductivity. In this study, we pursue a new approach that combines conductivity measurements of the dispersion and dispersion medium with the electroacoustic and electrophoretic zeta potential determination. The conductivity data are analyzed with the Maxwell-Wagner-O'Konski theory, providing the Dukhin number. Zeta potentials of highly concentrated polymer dispersions were determined using the colloid vibration current (CVI) method and compared with those obtained by electrophoretic light scattering (ELS) in diluted dispersions. In both cases, the relaxation effect was now taken into account on the basis of the experimentally determined Dukhin number. The evaluation of the Dukhin numbers revealed significant surface conductivity for all investigated polymer dispersions. In addition, it was often found that not only the diffuse layer but also the stagnant layer contributes considerably to the surface conductivity. Proper consideration of both effects is essential for the reliable determination of the zeta potential, as otherwise inconsistencies can be observed in the evaluated data. Moreover, we have validated for the first time that the advanced CVI theory takes the effect of surface conductivity properly into account for a wide range of particle volume fractions. These values agree well with those obtained by the ELS method using the Dukhin-Semenikhin theory or a modified theory of Ohshima, Healy, and White. This study thus shows that the Dukhin number can serve as a key parameter to reliably connect conductivity and electrophoretic and electroacoustic experiments.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04456","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate determination of the zeta potential in colloidal dispersions often requires consideration of the relaxation effect, which is associated with the polarization of the electrical double layer and the surface conductivity. In this study, we pursue a new approach that combines conductivity measurements of the dispersion and dispersion medium with the electroacoustic and electrophoretic zeta potential determination. The conductivity data are analyzed with the Maxwell-Wagner-O'Konski theory, providing the Dukhin number. Zeta potentials of highly concentrated polymer dispersions were determined using the colloid vibration current (CVI) method and compared with those obtained by electrophoretic light scattering (ELS) in diluted dispersions. In both cases, the relaxation effect was now taken into account on the basis of the experimentally determined Dukhin number. The evaluation of the Dukhin numbers revealed significant surface conductivity for all investigated polymer dispersions. In addition, it was often found that not only the diffuse layer but also the stagnant layer contributes considerably to the surface conductivity. Proper consideration of both effects is essential for the reliable determination of the zeta potential, as otherwise inconsistencies can be observed in the evaluated data. Moreover, we have validated for the first time that the advanced CVI theory takes the effect of surface conductivity properly into account for a wide range of particle volume fractions. These values agree well with those obtained by the ELS method using the Dukhin-Semenikhin theory or a modified theory of Ohshima, Healy, and White. This study thus shows that the Dukhin number can serve as a key parameter to reliably connect conductivity and electrophoretic and electroacoustic experiments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信