Copper-Based Metal-Organic Framework as a Potential Therapeutic Gas Carrier: Optimization, Synthesis, Characterization, and Computational Studies.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chitrangda Singh, Chandan Bhogendra Jha, Avnika Singh Anand, Ekta Kohli, Neha Manav, Raunak Varshney, Sreedevi Upadhyayula, Rashi Mathur
{"title":"Copper-Based Metal-Organic Framework as a Potential Therapeutic Gas Carrier: Optimization, Synthesis, Characterization, and Computational Studies.","authors":"Chitrangda Singh, Chandan Bhogendra Jha, Avnika Singh Anand, Ekta Kohli, Neha Manav, Raunak Varshney, Sreedevi Upadhyayula, Rashi Mathur","doi":"10.1021/acsabm.4c01907","DOIUrl":null,"url":null,"abstract":"<p><p>The broad spectrum of health conditions and the global pandemic, leading to inadequate medical oxygen supply and management, has driven interest in developing porous nanocarriers for effective oxygenation strategies. We aim to develop an injectable oxygen carrier with regard to biocompatibility, safety, prehospital availability, and universal applicability. In this study, we have tried to identify important functional sites on metal-organic frameworks (MOFs) for gas binding with the help of Grand canonical Monte Carlo simulation. We have synthesized a copper-based MOF (Cu-BTC) with a 1,3,5-benzenetricarboxylic acid linker through a solvothermal approach as a competent porous adsorbent for oxygen storage and delivery. To optimize process variables, we performed statistical analysis using response surface methodology. A quadratic model was developed to study the interaction between independent variables and the response (i.e., maximizing surface area), whose adequacy is validated by the correlation between experimental and predicted values using the ANOVA method. The synthesized Cu-BTC, before and after oxygen loading, was characterized using X-ray diffraction, surface area, along with pore distribution measurement, particle size analysis, scanning electron microscopy, transmission electron microscopy, and gas adsorption studies. The Cu-BTC MOF exhibited an oxygen uptake of 4.6 mmol g<sup>-1</sup>, the highest among all the oxygen carriers reported in the literature under the same operating conditions. Overall, our findings suggest that this synthesized Cu-BTC with high surface area (1389 m<sup>2</sup> g<sup>-1</sup>), high porosity, optimum oxygen uptake, and good biocompatibility would show potential toward efficient storage and delivery (direct to the targeted site) of medical oxygen to raise the blood oxygen saturation level.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The broad spectrum of health conditions and the global pandemic, leading to inadequate medical oxygen supply and management, has driven interest in developing porous nanocarriers for effective oxygenation strategies. We aim to develop an injectable oxygen carrier with regard to biocompatibility, safety, prehospital availability, and universal applicability. In this study, we have tried to identify important functional sites on metal-organic frameworks (MOFs) for gas binding with the help of Grand canonical Monte Carlo simulation. We have synthesized a copper-based MOF (Cu-BTC) with a 1,3,5-benzenetricarboxylic acid linker through a solvothermal approach as a competent porous adsorbent for oxygen storage and delivery. To optimize process variables, we performed statistical analysis using response surface methodology. A quadratic model was developed to study the interaction between independent variables and the response (i.e., maximizing surface area), whose adequacy is validated by the correlation between experimental and predicted values using the ANOVA method. The synthesized Cu-BTC, before and after oxygen loading, was characterized using X-ray diffraction, surface area, along with pore distribution measurement, particle size analysis, scanning electron microscopy, transmission electron microscopy, and gas adsorption studies. The Cu-BTC MOF exhibited an oxygen uptake of 4.6 mmol g-1, the highest among all the oxygen carriers reported in the literature under the same operating conditions. Overall, our findings suggest that this synthesized Cu-BTC with high surface area (1389 m2 g-1), high porosity, optimum oxygen uptake, and good biocompatibility would show potential toward efficient storage and delivery (direct to the targeted site) of medical oxygen to raise the blood oxygen saturation level.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信