Collaborative decision-making for UAV swarm confrontation based on reinforcement learning

IF 2.3 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yongkang Jiao, Wenxing Fu, Xinying Cao, Qiangqing Su, Yusheng Wang, Zixiang Shen, Lanlin Yu
{"title":"Collaborative decision-making for UAV swarm confrontation based on reinforcement learning","authors":"Yongkang Jiao,&nbsp;Wenxing Fu,&nbsp;Xinying Cao,&nbsp;Qiangqing Su,&nbsp;Yusheng Wang,&nbsp;Zixiang Shen,&nbsp;Lanlin Yu","doi":"10.1049/cth2.12781","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of unmanned aerial vehicle (UAV) technology, research on adversarial interactions within UAV swarms has gained significant attention domestically and internationally. However, the existing decision-making algorithms are primarily tailored to homogeneous UAV swarm adversarial scenarios, facing challenges such as complex reward function design and limited decision-making timeliness when applied to more intricate scenarios. This article investigates the real-time control decision-making issues in UAV swarm adversarial interactions. First, an adversarial simulation environment for UAV swarms is constructed, which effectively unifies the environment and state representation, enhancing the response speed of our UAVs. Second, a distributed UAV swarm collaborative control algorithm based on multi-agent reinforcement learning is proposed, and an effective sparse reward function is designed to guide UAVs in adversarial gaming, making the UAV strategies more aggressive, enhancing the adversarial intensity, and further optimizing the control strategy to meet real-world demands better. Finally, the real-time performance and scalability of the proposed method are validated through simulations.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12781","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.12781","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of unmanned aerial vehicle (UAV) technology, research on adversarial interactions within UAV swarms has gained significant attention domestically and internationally. However, the existing decision-making algorithms are primarily tailored to homogeneous UAV swarm adversarial scenarios, facing challenges such as complex reward function design and limited decision-making timeliness when applied to more intricate scenarios. This article investigates the real-time control decision-making issues in UAV swarm adversarial interactions. First, an adversarial simulation environment for UAV swarms is constructed, which effectively unifies the environment and state representation, enhancing the response speed of our UAVs. Second, a distributed UAV swarm collaborative control algorithm based on multi-agent reinforcement learning is proposed, and an effective sparse reward function is designed to guide UAVs in adversarial gaming, making the UAV strategies more aggressive, enhancing the adversarial intensity, and further optimizing the control strategy to meet real-world demands better. Finally, the real-time performance and scalability of the proposed method are validated through simulations.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于强化学习的无人机群对抗协同决策
随着无人机技术的发展,无人机群内对抗相互作用的研究受到了国内外的广泛关注。然而,现有的决策算法主要针对同质无人机群对抗场景,在应用于更复杂的场景时面临复杂的奖励函数设计和有限的决策时效性等挑战。研究了无人机群对抗交互中的实时控制决策问题。首先,构建了无人机蜂群的对抗仿真环境,有效地统一了环境和状态表示,提高了无人机的响应速度;其次,提出了一种基于多智能体强化学习的分布式无人机群协同控制算法,设计了有效的稀疏奖励函数来引导无人机进行对抗博弈,使无人机策略更具攻击性,增强对抗强度,并进一步优化控制策略以更好地满足现实需求。最后,通过仿真验证了该方法的实时性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信