Fixed-Time Fault-Tolerant Dynamic Formation Control for Heterogeneous Multi-Agent Systems With Communication Link Faults for Collaborative Wildfire Monitoring

IF 2.3 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Joewell T. Mawanza
{"title":"Fixed-Time Fault-Tolerant Dynamic Formation Control for Heterogeneous Multi-Agent Systems With Communication Link Faults for Collaborative Wildfire Monitoring","authors":"Joewell T. Mawanza","doi":"10.1049/cth2.70006","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the problem of heterogeneous multi-agent systems (HMAS), comprising multiple uncrewed ground vehicles (UGVs) and multiple uncrewed aerial vehicles (UAVs), collaboratively monitoring the wildfire in the presence of actuator faults and communication link faults during the fire monitoring mission. It presents a fixed-time fault-tolerant dynamic formation control scheme designed for HMAS, with the objective of monitoring either the circular or elliptical propagation of a wildfire. The paper adopts a fixed-time extended state observer (FxESO) to estimate the multi-source disturbances arising from external disturbances and actuator faults, ensuring fixed-time convergence of the estimation errors of the FxESO. By utilizing the Lyapunov candidate theorem, the collaborative tracking errors will converge to zero in fixed time, regardless of the initial position, ensuring that all agents in HMAS monitor the dynamic wildfire perimeter. Comparative simulation results are presented to illustrate the effectiveness of the proposed control scheme.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cth2.70006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of heterogeneous multi-agent systems (HMAS), comprising multiple uncrewed ground vehicles (UGVs) and multiple uncrewed aerial vehicles (UAVs), collaboratively monitoring the wildfire in the presence of actuator faults and communication link faults during the fire monitoring mission. It presents a fixed-time fault-tolerant dynamic formation control scheme designed for HMAS, with the objective of monitoring either the circular or elliptical propagation of a wildfire. The paper adopts a fixed-time extended state observer (FxESO) to estimate the multi-source disturbances arising from external disturbances and actuator faults, ensuring fixed-time convergence of the estimation errors of the FxESO. By utilizing the Lyapunov candidate theorem, the collaborative tracking errors will converge to zero in fixed time, regardless of the initial position, ensuring that all agents in HMAS monitor the dynamic wildfire perimeter. Comparative simulation results are presented to illustrate the effectiveness of the proposed control scheme.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于通信链路故障的异构多智能体系统的固定时间容错动态编队控制
针对火灾监测任务中存在执行器故障和通信链路故障情况下,由多架无人驾驶地面车辆(ugv)和多架无人驾驶飞行器(uav)组成的异构多智能体系统(HMAS)协同监测野火的问题。提出了一种针对HMAS的定时容错动态编队控制方案,以监测野火的圆形或椭圆形传播。本文采用定时扩展状态观测器(FxESO)来估计由外部干扰和执行器故障引起的多源干扰,保证了FxESO估计误差的定时收敛性。利用Lyapunov候选定理,无论初始位置如何,协同跟踪误差都会在固定时间内收敛为零,从而确保HMAS中的所有智能体都监控动态野火周界。对比仿真结果验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信