Gender Disparities in Melanoma: Advances in Diagnosis, Treatment, and the Role of Artificial Intelligence

Diala Ra'Ed Kamal Kakish, Jehad Feras Alsamhori, Lana N. Qaqish, Layan Aburumman, Razan Sarsur, Asham Al Salkhadi, Zbeida Bassam Nassif, Mustafa Ahmed Akmal, Abdulqadir J. Nashwan
{"title":"Gender Disparities in Melanoma: Advances in Diagnosis, Treatment, and the Role of Artificial Intelligence","authors":"Diala Ra'Ed Kamal Kakish,&nbsp;Jehad Feras Alsamhori,&nbsp;Lana N. Qaqish,&nbsp;Layan Aburumman,&nbsp;Razan Sarsur,&nbsp;Asham Al Salkhadi,&nbsp;Zbeida Bassam Nassif,&nbsp;Mustafa Ahmed Akmal,&nbsp;Abdulqadir J. Nashwan","doi":"10.1002/der2.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Melanoma, a highly aggressive skin cancer, demonstrates significant gender disparities, with men facing later-stage diagnoses, more aggressive tumor characteristics, and worse survival rates. This review examines the biological, behavioral, and environmental factors driving these disparities, alongside recent advancements in diagnosis and treatment. Additionally, it explores how artificial intelligence (AI) can address gender-specific differences in melanoma incidence and outcomes.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Gender disparities in melanoma stem from biological factors, such as hormonal and genetic differences, and behavioral patterns like delayed health-seeking among men. AI-driven diagnostic tools, including convolutional neural networks (CNNs), show promise but often reflect biases in training data sets, underrepresenting darker skin tones and gender-specific patterns. Ensuring diverse data sets, integrating “super-prompts” or region-specific demographic prompts, and utilizing bias-aware algorithms can help mitigate these biases, thereby improving diagnostic accuracy and equity.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Reducing gender disparities in melanoma requires integrating innovative technologies with equitable healthcare policies and education. Early detection using inclusive AI models tailored to diverse skin tones and genders, alongside targeted therapeutic strategies, is critical to improving outcomes for high-risk groups, particularly men and underserved populations.</p>\n </section>\n </div>","PeriodicalId":100366,"journal":{"name":"Dermatological Reviews","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/der2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatological Reviews","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/der2.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Melanoma, a highly aggressive skin cancer, demonstrates significant gender disparities, with men facing later-stage diagnoses, more aggressive tumor characteristics, and worse survival rates. This review examines the biological, behavioral, and environmental factors driving these disparities, alongside recent advancements in diagnosis and treatment. Additionally, it explores how artificial intelligence (AI) can address gender-specific differences in melanoma incidence and outcomes.

Results

Gender disparities in melanoma stem from biological factors, such as hormonal and genetic differences, and behavioral patterns like delayed health-seeking among men. AI-driven diagnostic tools, including convolutional neural networks (CNNs), show promise but often reflect biases in training data sets, underrepresenting darker skin tones and gender-specific patterns. Ensuring diverse data sets, integrating “super-prompts” or region-specific demographic prompts, and utilizing bias-aware algorithms can help mitigate these biases, thereby improving diagnostic accuracy and equity.

Conclusion

Reducing gender disparities in melanoma requires integrating innovative technologies with equitable healthcare policies and education. Early detection using inclusive AI models tailored to diverse skin tones and genders, alongside targeted therapeutic strategies, is critical to improving outcomes for high-risk groups, particularly men and underserved populations.

黑色素瘤的性别差异:诊断、治疗和人工智能的作用
黑色素瘤是一种高度侵袭性的皮肤癌,性别差异显著,男性面临晚期诊断,肿瘤特征更具侵袭性,生存率更差。这篇综述探讨了导致这些差异的生物、行为和环境因素,以及最近在诊断和治疗方面的进展。此外,它还探讨了人工智能(AI)如何解决黑色素瘤发病率和结果的性别差异。结果黑色素瘤的性别差异源于生理因素,如激素和基因差异,以及行为模式,如男性延迟求医。包括卷积神经网络(cnn)在内的人工智能驱动的诊断工具显示出希望,但往往反映出训练数据集中的偏见,无法代表较深的肤色和特定性别的模式。确保多样化的数据集,整合“超级提示”或特定区域的人口统计提示,并利用偏见感知算法可以帮助减轻这些偏见,从而提高诊断的准确性和公平性。结论减少黑色素瘤的性别差异需要将创新技术与公平的医疗政策和教育相结合。使用针对不同肤色和性别量身定制的包容性人工智能模型进行早期检测,以及有针对性的治疗策略,对于改善高危人群,特别是男性和服务不足人群的预后至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信