Glycosylated Polymers Toward Stable Protein-Based Lighting

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
David Gutierrez-Armayor, Alicia Asin, Marta Patrian, Mattia Nieddu, Rubén D. Costa
{"title":"Glycosylated Polymers Toward Stable Protein-Based Lighting","authors":"David Gutierrez-Armayor,&nbsp;Alicia Asin,&nbsp;Marta Patrian,&nbsp;Mattia Nieddu,&nbsp;Rubén D. Costa","doi":"10.1002/macp.202400429","DOIUrl":null,"url":null,"abstract":"<p>Protein-based optoelectronics faces two challenges to keep the performance of conventional technologies: stabilizing proteins through water-free fabrication methods and developing bio-friendly interfaces. In this context, bio-hybrid lighting, which integrates fluorescent protein (FP) based photon down-converting filters, represents an emerging concept toward ensuring a sustainable lighting sector. They promise to replace rare earth and/or toxic emitters applied for photon down-conversion in white commercial LEDs with FP-polymer color filters. A key component is a branched polyethylene oxide that stabilizes FPs in a water-less environment upon film forming. Recently sugar additives are successfully used as natural desiccation protectants against osmotic dehydration stress to further enhance FP stability by reinforcing intra-protein H-bonding. Herein, the glycosylation of the branched polymer is disclosed to stabilize FPs in coatings that resulted in 300-fold enhanced device stability due to a significant reduction of the heat generation and slow-down of the H-transfer-assisted emission deactivation process compared to reference polymer coatings. Thermal and spectroscopic techniques suggest that this finding is related to the higher crystallinity of the coatings and rigid environment provided by the glycosylated polymers. Overall, this work reinforces the use of sugars (additives or glycosylated polymers) to preserve the emission/thermal properties of FPs in water-less environments for optoelectronics.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400429","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400429","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-based optoelectronics faces two challenges to keep the performance of conventional technologies: stabilizing proteins through water-free fabrication methods and developing bio-friendly interfaces. In this context, bio-hybrid lighting, which integrates fluorescent protein (FP) based photon down-converting filters, represents an emerging concept toward ensuring a sustainable lighting sector. They promise to replace rare earth and/or toxic emitters applied for photon down-conversion in white commercial LEDs with FP-polymer color filters. A key component is a branched polyethylene oxide that stabilizes FPs in a water-less environment upon film forming. Recently sugar additives are successfully used as natural desiccation protectants against osmotic dehydration stress to further enhance FP stability by reinforcing intra-protein H-bonding. Herein, the glycosylation of the branched polymer is disclosed to stabilize FPs in coatings that resulted in 300-fold enhanced device stability due to a significant reduction of the heat generation and slow-down of the H-transfer-assisted emission deactivation process compared to reference polymer coatings. Thermal and spectroscopic techniques suggest that this finding is related to the higher crystallinity of the coatings and rigid environment provided by the glycosylated polymers. Overall, this work reinforces the use of sugars (additives or glycosylated polymers) to preserve the emission/thermal properties of FPs in water-less environments for optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信