Tim Maes, Julie Verheyen, Bruno Senghor, Aspire Mudavanhu, Ruben Schols, Bart Hellemans, Enora Geslain, Filip A. M. Volckaert, Hugo F. Gante, Tine Huyse
{"title":"First evidence of a genetic basis for thermal adaptation in a schistosome host snail","authors":"Tim Maes, Julie Verheyen, Bruno Senghor, Aspire Mudavanhu, Ruben Schols, Bart Hellemans, Enora Geslain, Filip A. M. Volckaert, Hugo F. Gante, Tine Huyse","doi":"10.1002/ecm.70006","DOIUrl":null,"url":null,"abstract":"<p>Freshwater snails play a key role in the transmission of schistosomiasis, a tropical parasitic disease affecting over 150 million people. Adaptation of these snails to local climatic conditions is a critical factor in determining how climate change and other environmental factors influence disease transmission dynamics, yet this potential adaptation has remained unexplored. <i>Bulinus truncatus</i> is the schistosome intermediate host snail with the widest geographic distribution and is therefore an important factor determining the maximum range of urogenital schistosomiasis. In this study, we assessed the local adaptation capacity of <i>B. truncatus</i> to temperature through an integrative approach encompassing phenotypic, ecophysiological, and genomic data. Ten snail populations from diverse thermal environments were collected in three countries, with eight populations reared in a common garden. The F2 generation (<i>N</i> = 2304) was exposed to eight chronic temperature treatments (±36 snails/population/temperature treatment) and various life history traits were recorded for over 14 weeks. Subsequently, ecophysiological analyses were conducted on the 10 last surviving snails per population. Genotyping the parental generation collected in the field using a genotyping-by-sequencing (GBS) approach, revealed 12,875 single-nucleotide polymorphisms (SNPs), of which 4.91% were potentially under selection. We observed a significant association between outlier SNPs, temperature, and precipitation. Thermal adaptations in life history traits were evident, with lower survival rates at high temperatures of warm-origin snails compensated for by higher reproduction rates. Cold-origin snails, on the other hand, exhibited higher growth rates adapted to a shorter growing season. Ecophysiological adaptations included elevated sugar and hemoglobin contents in cold-adapted snails. In contrast, warm-adapted snails displayed not only increased protein levels but also more oxidative damage. Furthermore, heightened phenoloxidase levels indicated a more robust immune response in snails from parasite-rich regions. These morphological and physiological differences provide convincing evidence for a genetic basis of local adaptation. This in turn holds profound implications for the snail's response to climate change, future schistosomiasis risk, and the effectiveness of schistosomiasis control measures.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70006","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater snails play a key role in the transmission of schistosomiasis, a tropical parasitic disease affecting over 150 million people. Adaptation of these snails to local climatic conditions is a critical factor in determining how climate change and other environmental factors influence disease transmission dynamics, yet this potential adaptation has remained unexplored. Bulinus truncatus is the schistosome intermediate host snail with the widest geographic distribution and is therefore an important factor determining the maximum range of urogenital schistosomiasis. In this study, we assessed the local adaptation capacity of B. truncatus to temperature through an integrative approach encompassing phenotypic, ecophysiological, and genomic data. Ten snail populations from diverse thermal environments were collected in three countries, with eight populations reared in a common garden. The F2 generation (N = 2304) was exposed to eight chronic temperature treatments (±36 snails/population/temperature treatment) and various life history traits were recorded for over 14 weeks. Subsequently, ecophysiological analyses were conducted on the 10 last surviving snails per population. Genotyping the parental generation collected in the field using a genotyping-by-sequencing (GBS) approach, revealed 12,875 single-nucleotide polymorphisms (SNPs), of which 4.91% were potentially under selection. We observed a significant association between outlier SNPs, temperature, and precipitation. Thermal adaptations in life history traits were evident, with lower survival rates at high temperatures of warm-origin snails compensated for by higher reproduction rates. Cold-origin snails, on the other hand, exhibited higher growth rates adapted to a shorter growing season. Ecophysiological adaptations included elevated sugar and hemoglobin contents in cold-adapted snails. In contrast, warm-adapted snails displayed not only increased protein levels but also more oxidative damage. Furthermore, heightened phenoloxidase levels indicated a more robust immune response in snails from parasite-rich regions. These morphological and physiological differences provide convincing evidence for a genetic basis of local adaptation. This in turn holds profound implications for the snail's response to climate change, future schistosomiasis risk, and the effectiveness of schistosomiasis control measures.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.