An Initial Genome Editing Toolset for Caldimonas thermodepolymerans, the First Model of Thermophilic Polyhydroxyalkanoates Producer

IF 5.7 2区 生物学
Anastasiia Grybchuk-Ieremenko, Kristýna Lipovská, Xenie Kouřilová, Stanislav Obruča, Pavel Dvořák
{"title":"An Initial Genome Editing Toolset for Caldimonas thermodepolymerans, the First Model of Thermophilic Polyhydroxyalkanoates Producer","authors":"Anastasiia Grybchuk-Ieremenko,&nbsp;Kristýna Lipovská,&nbsp;Xenie Kouřilová,&nbsp;Stanislav Obruča,&nbsp;Pavel Dvořák","doi":"10.1111/1751-7915.70103","DOIUrl":null,"url":null,"abstract":"<p>The limited number of well-characterised model bacteria cannot address all the challenges in a circular bioeconomy. Therefore, there is a growing demand for new production strains with enhanced resistance to extreme conditions, versatile metabolic capabilities and the ability to utilise cost-effective renewable resources while efficiently generating attractive biobased products. Particular thermophilic microorganisms fulfil these requirements. Non-virulent Gram-negative <i>Caldimonas thermodepolymerans</i> DSM15344 is one such attractive thermophile that efficiently converts a spectrum of plant biomass sugars into high quantities of polyhydroxyalkanoates (PHA)—a fully biodegradable substitutes for synthetic plastics. However, to enhance its biotechnological potential, the bacterium needs to be ‘domesticated’. In this study, we established effective homologous recombination and transposon-based genome editing systems for <i>C. thermodepolymerans</i>. By optimising the electroporation protocol and refining counterselection methods, we achieved significant improvements in genetic manipulation and constructed the AI01 chassis strain with improved transformation efficiency and a Δ<i>phaC</i> mutant that will be used to study the importance of PHA synthesis in <i>Caldimonas</i>. The advances described herein highlight the need for tailored approaches when working with thermophilic bacteria and provide a springboard for further genetic and metabolic engineering of <i>C. thermodepolymerans</i>, which can be considered the first model of thermophilic PHA producer.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70103","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The limited number of well-characterised model bacteria cannot address all the challenges in a circular bioeconomy. Therefore, there is a growing demand for new production strains with enhanced resistance to extreme conditions, versatile metabolic capabilities and the ability to utilise cost-effective renewable resources while efficiently generating attractive biobased products. Particular thermophilic microorganisms fulfil these requirements. Non-virulent Gram-negative Caldimonas thermodepolymerans DSM15344 is one such attractive thermophile that efficiently converts a spectrum of plant biomass sugars into high quantities of polyhydroxyalkanoates (PHA)—a fully biodegradable substitutes for synthetic plastics. However, to enhance its biotechnological potential, the bacterium needs to be ‘domesticated’. In this study, we established effective homologous recombination and transposon-based genome editing systems for C. thermodepolymerans. By optimising the electroporation protocol and refining counterselection methods, we achieved significant improvements in genetic manipulation and constructed the AI01 chassis strain with improved transformation efficiency and a ΔphaC mutant that will be used to study the importance of PHA synthesis in Caldimonas. The advances described herein highlight the need for tailored approaches when working with thermophilic bacteria and provide a springboard for further genetic and metabolic engineering of C. thermodepolymerans, which can be considered the first model of thermophilic PHA producer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信