Application of operator theory for the collatz conjecture

IF 0.8 Q2 MATHEMATICS
Takehiko Mori
{"title":"Application of operator theory for the collatz conjecture","authors":"Takehiko Mori","doi":"10.1007/s43036-025-00425-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Collatz map (or the <span>\\(3n{+}1\\)</span>-map) <i>f</i> is defined on positive integers by setting <i>f</i>(<i>n</i>) equal to <span>\\(3n+1\\)</span> when <i>n</i> is odd and <i>n</i>/2 when <i>n</i> is even. The Collatz conjecture states that starting from any positive integer <i>n</i>, some iterate of <i>f</i> takes value 1. In this study, we discuss formulations of the Collatz conjecture by <span>\\(C^{*}\\)</span>-algebras in the following three ways: (1) single operator, (2) two operators, and (3) Cuntz algebra. For the <span>\\(C^{*}\\)</span>-algebra generated by each of these, we consider the condition that it has no non-trivial reducing subspaces. For (1), we prove that the condition implies the Collatz conjecture. In the cases (2) and (3), we prove that the condition is equivalent to the Collatz conjecture. For similar maps, we introduce equivalence relations by them and generalize connections between the Collatz conjecture and irreducibility of associated <span>\\(C^{*}\\)</span>-algebras.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00425-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Collatz map (or the \(3n{+}1\)-map) f is defined on positive integers by setting f(n) equal to \(3n+1\) when n is odd and n/2 when n is even. The Collatz conjecture states that starting from any positive integer n, some iterate of f takes value 1. In this study, we discuss formulations of the Collatz conjecture by \(C^{*}\)-algebras in the following three ways: (1) single operator, (2) two operators, and (3) Cuntz algebra. For the \(C^{*}\)-algebra generated by each of these, we consider the condition that it has no non-trivial reducing subspaces. For (1), we prove that the condition implies the Collatz conjecture. In the cases (2) and (3), we prove that the condition is equivalent to the Collatz conjecture. For similar maps, we introduce equivalence relations by them and generalize connections between the Collatz conjecture and irreducibility of associated \(C^{*}\)-algebras.

算子理论在collatz猜想中的应用
Collatz映射(或\(3n{+}1\) -map) f是在正整数上定义的,当n为奇数时设置f(n)等于\(3n+1\),当n为偶数时设置n/2。Collatz猜想指出,从任意正整数n开始,f的迭代值为1。在本研究中,我们讨论了\(C^{*}\) -代数在以下三种方式下的Collatz猜想的表述:(1)单算子,(2)双算子,(3)Cuntz代数。对于每一个生成的\(C^{*}\) -代数,我们考虑它没有非平凡约简子空间的条件。对于(1),我们证明了该条件蕴涵Collatz猜想。在情形(2)和(3)中,我们证明了该条件等价于Collatz猜想。对于相似映射,我们通过它们引入等价关系,并推广了Collatz猜想与相关\(C^{*}\) -代数的不可约性之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信