A key factor to ensure a sustainable future for the air transport industry is electrification. Exploring new designs for permanent magnet electric motors could increase their potential. Unfortunately, complex shaped magnets cannot be produced easily using current fabrication methods. Cold spray additive manufacturing could eventually help to alleviate this problem by allowing the fabrication of magnets with complex geometries consolidated on electric motor parts. Furthermore, another aspect to increase the electric motors’ efficiency is the possibility to operate at higher RPM and with higher electrical currents, consequently generating more heat. Currently, most magnets are prepared with NdFeB, which is less tolerant to high-temperature exposure. This work reports on the cold spray additive manufacturing of samarium-cobalt (SmCo), a material of growing interest since it preserves most of its magnetic properties up to 350 °C. The permanent magnets were fabricated using a SmCo-Al composite powder mix in a standardized simple geometry to evaluate the impact of the fabrication parameters. The impact of the powder mix composition and the gas temperature on the magnetic properties is investigated. The results demonstrate that the use of cold spray would be effective for fabricating SmCo composite permanent magnets directly on the electric motor parts.