{"title":"Conformal leptogenesis in composite Higgs models","authors":"Kaustubh Agashe, Peizhi Du, Majid Ekhterachian, Chee Sheng Fong, Sungwoo Hong, Luca Vecchi","doi":"10.1007/JHEP02(2025)132","DOIUrl":null,"url":null,"abstract":"<p>We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we call <i>Conformal Leptogenesis</i>, admits a reliable description in terms of a set of “Boltzmann equations” whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness for <i>all</i> the generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)132.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)132","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we call Conformal Leptogenesis, admits a reliable description in terms of a set of “Boltzmann equations” whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness for all the generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).