Dhirendra Jha, Bhargavi Somapur, Abhijit Paul, C. Kavitha, Nagaiah Kambhala
{"title":"RGO flakes decorated NiO nanoflowers for supercapacitor applications-synthesis and characterizations","authors":"Dhirendra Jha, Bhargavi Somapur, Abhijit Paul, C. Kavitha, Nagaiah Kambhala","doi":"10.1007/s00339-025-08335-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel oxide (NiO) nanoflowers decorated with reduced graphene oxide (RGO) were synthesised via the cost-effective hydrothermal method, followed by calcination to form composites. Various analytical techniques including FE-SEM, XRD, UV-visible, and Raman were employed to characterize the morphological, structural, and optical properties of the specimens, respectively. Electrochemical properties of NiO nano flower and RGO-decorated NiO nanoflowers (NRGO) materials, were evaluated through cyclic voltammetry, galvanostatic charge-discharge testing, and electrochemical impedance analysis. Findings indicate that the addition of RGO enhances the reversibility of NiO as an electrode material by providing a continuous framework and more active sites for redox reactions due to its unique configuration. The specific capacitance of the NRGO3 composites reached 396 Fg<sup>− 1</sup> in a 6 M KOH electrolyte at a scan rate of 10 mV/s and has the lowest R<sub>CT</sub> value compared to others. All the samples have shown good stability with a percentage of retention of more than 80%, suggesting that, it is a good electrode material for energy storage applications.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08335-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel oxide (NiO) nanoflowers decorated with reduced graphene oxide (RGO) were synthesised via the cost-effective hydrothermal method, followed by calcination to form composites. Various analytical techniques including FE-SEM, XRD, UV-visible, and Raman were employed to characterize the morphological, structural, and optical properties of the specimens, respectively. Electrochemical properties of NiO nano flower and RGO-decorated NiO nanoflowers (NRGO) materials, were evaluated through cyclic voltammetry, galvanostatic charge-discharge testing, and electrochemical impedance analysis. Findings indicate that the addition of RGO enhances the reversibility of NiO as an electrode material by providing a continuous framework and more active sites for redox reactions due to its unique configuration. The specific capacitance of the NRGO3 composites reached 396 Fg− 1 in a 6 M KOH electrolyte at a scan rate of 10 mV/s and has the lowest RCT value compared to others. All the samples have shown good stability with a percentage of retention of more than 80%, suggesting that, it is a good electrode material for energy storage applications.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.