{"title":"Effect of NiCrCoAlY Transition Layer Thickness on Structure and Properties of BNT/NiCrCoAlY Ceramic Coatings","authors":"Hefa Zhu, Weiling Guo, Longlong Zhou, Wei Peng, Haidou Wang, Han Dong, Zhiguo Xing","doi":"10.1007/s11666-025-01936-2","DOIUrl":null,"url":null,"abstract":"<div><p>In order to avoid the deterioration of electrical properties of Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) ceramic coatings and metal substrate due to poor bonding performance, a NiCrCoAlY layer was introduced as a transition layer between BNT ceramic coatings and metal substrate. In this paper, BNT/NiCrCoAlY ceramic coatings were prepared by supersonic plasma spraying. The effects of NiCrCoAlY transition layer thickness on microstructure, mechanical properties, electrical properties, and domain evolution of BNT/NiCrCoAlY ceramic coatings were analyzed. The thickness of the NiCrCoAlY transition layer has a significant effect on the mechanical properties of BNT/NiCrCoAlY ceramic coatings. When the thickness of the NiCrCoAlY transition layer is 159.1 μm, the residual compressive stress on the surface of the NiCrCoAlY transition layer is the largest, which is − 185.4 MPa, and the direct bonding performance between the coating and substrate is the best. The residual compressive stress of the coating has a good positive effect on the hardness and bond strength of the coating, which significantly improves the structural integrity and mechanical properties of the coating. BNT2 ceramic coating has the largest average amplitude intensity of 46.0 pm, and the amplitude histogram ranges from − 10 to 90 pm. BNT2 ceramic coating has a relatively large value of the maximum amplitude of the butterfly loops at ± 20 V, and its localized piezoelectric response (<i>PR</i><sub>max</sub>) reaches 449.6 pm/V, and the ferroelectric domains exhibit an obvious switching behavior.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 1","pages":"444 - 459"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01936-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to avoid the deterioration of electrical properties of Bi0.5Na0.5TiO3 (BNT) ceramic coatings and metal substrate due to poor bonding performance, a NiCrCoAlY layer was introduced as a transition layer between BNT ceramic coatings and metal substrate. In this paper, BNT/NiCrCoAlY ceramic coatings were prepared by supersonic plasma spraying. The effects of NiCrCoAlY transition layer thickness on microstructure, mechanical properties, electrical properties, and domain evolution of BNT/NiCrCoAlY ceramic coatings were analyzed. The thickness of the NiCrCoAlY transition layer has a significant effect on the mechanical properties of BNT/NiCrCoAlY ceramic coatings. When the thickness of the NiCrCoAlY transition layer is 159.1 μm, the residual compressive stress on the surface of the NiCrCoAlY transition layer is the largest, which is − 185.4 MPa, and the direct bonding performance between the coating and substrate is the best. The residual compressive stress of the coating has a good positive effect on the hardness and bond strength of the coating, which significantly improves the structural integrity and mechanical properties of the coating. BNT2 ceramic coating has the largest average amplitude intensity of 46.0 pm, and the amplitude histogram ranges from − 10 to 90 pm. BNT2 ceramic coating has a relatively large value of the maximum amplitude of the butterfly loops at ± 20 V, and its localized piezoelectric response (PRmax) reaches 449.6 pm/V, and the ferroelectric domains exhibit an obvious switching behavior.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.