Effect of Scanning Rate on Microstructure and Properties of Fe-Based Amorphous Composite Coatings Prepared by Laser Cladding under Constant Heat Dissipation
IF 3.2 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"Effect of Scanning Rate on Microstructure and Properties of Fe-Based Amorphous Composite Coatings Prepared by Laser Cladding under Constant Heat Dissipation","authors":"Wei Zhao, Xiaopeng Shan, Wei Zha, Wei Lv, Ghulam Hussain, Junting Luo","doi":"10.1007/s11666-025-01929-1","DOIUrl":null,"url":null,"abstract":"<div><p>A water circulation system consisting of a heat dissipation plate was designed to assist laser cladding. The impact of scanning rate under constant cooling conditions on the structure and properties of Fe-based amorphous composite coatings prepared by laser cladding was investigated. The results show that with increasing scanning rate, the coating exhibits different characteristics. At 17 mm/s, the coating has the fastest cooling rate, minimal heat impact, and features predominantly amorphous phase, high hardness, and excellent wear and corrosion resistance. At 11 mm/s and 13 mm/s, local high hardness phases appear, but overall hardness is poor. At 15 mm/s, the coating has the highest hardness (630HV) due to increased amorphous content and solid solution strengthening of supersaturated <i>α</i>-Fe phase. Wear tests reveal low and stable wear rates for samples at 15 mm/s and 17 mm/s, correlating with their uniform hardness. Corrosion resistance tests show the best performance for the 11 mm/s samples, with excellent corrosion resistance. As scanning rate increases, the content of strengthening phases decreases, and the supersaturation of <i>α</i>-Fe phase increases, leading to decreased corrosion resistance. The 17 mm/s samples, with significantly higher amorphous phase content and lower overall content of supersaturated <i>α</i>-Fe phase, exhibit excellent corrosion resistance.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 1","pages":"354 - 365"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01929-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
A water circulation system consisting of a heat dissipation plate was designed to assist laser cladding. The impact of scanning rate under constant cooling conditions on the structure and properties of Fe-based amorphous composite coatings prepared by laser cladding was investigated. The results show that with increasing scanning rate, the coating exhibits different characteristics. At 17 mm/s, the coating has the fastest cooling rate, minimal heat impact, and features predominantly amorphous phase, high hardness, and excellent wear and corrosion resistance. At 11 mm/s and 13 mm/s, local high hardness phases appear, but overall hardness is poor. At 15 mm/s, the coating has the highest hardness (630HV) due to increased amorphous content and solid solution strengthening of supersaturated α-Fe phase. Wear tests reveal low and stable wear rates for samples at 15 mm/s and 17 mm/s, correlating with their uniform hardness. Corrosion resistance tests show the best performance for the 11 mm/s samples, with excellent corrosion resistance. As scanning rate increases, the content of strengthening phases decreases, and the supersaturation of α-Fe phase increases, leading to decreased corrosion resistance. The 17 mm/s samples, with significantly higher amorphous phase content and lower overall content of supersaturated α-Fe phase, exhibit excellent corrosion resistance.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.