Nanoporous platinum microelectrode arrays for neuroscience applications†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-02-20 DOI:10.1039/D4RA08957J
Nicolai Winter-Hjelm, Leik Isdal, Peter A. Köllensperger, Axel Sandvig, Ioanna Sandvig and Pawel Sikorski
{"title":"Nanoporous platinum microelectrode arrays for neuroscience applications†","authors":"Nicolai Winter-Hjelm, Leik Isdal, Peter A. Köllensperger, Axel Sandvig, Ioanna Sandvig and Pawel Sikorski","doi":"10.1039/D4RA08957J","DOIUrl":null,"url":null,"abstract":"<p >Microelectrode arrays are invaluable tools for investigating the electrophysiological behaviour of neuronal networks with high spatiotemporal precision. In recent years, it has become increasingly common to functionalize such electrodes with highly porous platinum to increase their effective surface area, and hence their signal-to-noise ratio. Although such functionalization significantly improves the electrochemical performance of the electrodes, the impact of various electrode morphologies on biocompatibility and electrophysiological performance in cell cultures remains poorly understood. In this study, we introduce reproducible protocols for depositing highly porous platinum with varying morphologies on microelectrodes designed for neural cell cultures. We also evaluate the impact of morphology and electrode size on the signal-to-noise ratio in recordings from rat cortical neurons cultured on these electrodes. Our results indicate that electrodes with a uniform layer of highly nanoporous platinum offer the best trade-off between biocompatibility, electrochemical, and electrophysiological performance. While more microporous electrodes exhibited lower impedance, nanoporous electrodes detected higher extracellular signal amplitudes from neurons, suggesting reduced distance between perisomatic neuronal areas and the electrodes. Additionally, these nanoporous electrodes showed fewer thickness variations at their edges compared to the more porous electrodes. Such edges can be mechanically broken off during cell culturing and contribute to long-term cytotoxic effects, which is highly undesirable. We hope this work will contribute to better standardization in creating and utilizing nanoporous platinum microelectrodes for neuroscience applications. Improving the accessibility and reproducibility of this technology is crucial for enhancing the quality of electrophysiological data and advancing our understanding of neuronal network function and dysfunction.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 8","pages":" 5822-5836"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08957j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08957j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microelectrode arrays are invaluable tools for investigating the electrophysiological behaviour of neuronal networks with high spatiotemporal precision. In recent years, it has become increasingly common to functionalize such electrodes with highly porous platinum to increase their effective surface area, and hence their signal-to-noise ratio. Although such functionalization significantly improves the electrochemical performance of the electrodes, the impact of various electrode morphologies on biocompatibility and electrophysiological performance in cell cultures remains poorly understood. In this study, we introduce reproducible protocols for depositing highly porous platinum with varying morphologies on microelectrodes designed for neural cell cultures. We also evaluate the impact of morphology and electrode size on the signal-to-noise ratio in recordings from rat cortical neurons cultured on these electrodes. Our results indicate that electrodes with a uniform layer of highly nanoporous platinum offer the best trade-off between biocompatibility, electrochemical, and electrophysiological performance. While more microporous electrodes exhibited lower impedance, nanoporous electrodes detected higher extracellular signal amplitudes from neurons, suggesting reduced distance between perisomatic neuronal areas and the electrodes. Additionally, these nanoporous electrodes showed fewer thickness variations at their edges compared to the more porous electrodes. Such edges can be mechanically broken off during cell culturing and contribute to long-term cytotoxic effects, which is highly undesirable. We hope this work will contribute to better standardization in creating and utilizing nanoporous platinum microelectrodes for neuroscience applications. Improving the accessibility and reproducibility of this technology is crucial for enhancing the quality of electrophysiological data and advancing our understanding of neuronal network function and dysfunction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信