Local statistical moments to capture Kramers–Moyal coefficients

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Christian Wiedemann, Matthias Wächter, Jan A. Freund, Joachim Peinke
{"title":"Local statistical moments to capture Kramers–Moyal coefficients","authors":"Christian Wiedemann,&nbsp;Matthias Wächter,&nbsp;Jan A. Freund,&nbsp;Joachim Peinke","doi":"10.1140/epjb/s10051-025-00883-9","DOIUrl":null,"url":null,"abstract":"<p>This study introduces an innovative local statistical moment approach for estimating Kramers–Moyal coefficients, effectively bridging the gap between nonparametric and parametric methodologies. These coefficients play a crucial role in characterizing stochastic processes. Our proposed approach provides a versatile framework for localized coefficient estimation, combining the flexibility of nonparametric methods with the interpretability of global parametric approaches. We showcase the efficacy of our approach through use cases involving both stationary and non-stationary time series analysis. Additionally, we demonstrate its applicability to real-world complex systems, specifically in the energy conversion process analysis of a wind turbine.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00883-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00883-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative local statistical moment approach for estimating Kramers–Moyal coefficients, effectively bridging the gap between nonparametric and parametric methodologies. These coefficients play a crucial role in characterizing stochastic processes. Our proposed approach provides a versatile framework for localized coefficient estimation, combining the flexibility of nonparametric methods with the interpretability of global parametric approaches. We showcase the efficacy of our approach through use cases involving both stationary and non-stationary time series analysis. Additionally, we demonstrate its applicability to real-world complex systems, specifically in the energy conversion process analysis of a wind turbine.

局部统计矩来获取克莱默斯-莫亚尔系数
本研究引入了一种创新的局部统计矩方法来估计Kramers-Moyal系数,有效地弥合了非参数和参数方法之间的差距。这些系数在描述随机过程中起着至关重要的作用。我们提出的方法为局部系数估计提供了一个通用的框架,结合了非参数方法的灵活性和全局参数方法的可解释性。我们通过涉及平稳和非平稳时间序列分析的用例展示了我们方法的有效性。此外,我们还展示了其对现实世界复杂系统的适用性,特别是在风力涡轮机的能量转换过程分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信