Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation

Eudald Sangenis;Chi-Shih Jao;Andrei M. Shkel
{"title":"Effect of Adding Time Correlation to SVM-Based Motion Classification in Pedestrian Navigation","authors":"Eudald Sangenis;Chi-Shih Jao;Andrei M. Shkel","doi":"10.1109/JISPIN.2025.3536396","DOIUrl":null,"url":null,"abstract":"In this article, we propose an approach to enhance zero-velocity-update (ZUPT)-aided inertial navigation systems (INSs) with a time series support vector machine (SVM) forecaster algorithm. The approach is based on the inclusion in ZUPT algorithm the time correlation of velocity threshold values based on classification of 19 distinct pedestrian activities determined from a foot-mounted inertial measurement unit. The classification enhances the traditional ZUPT-aided INS by first optimizing the threshold in the detector called stance hypothesis optimal detection and second adjusting zero-velocity measurement variances for each categorized locomotion type. Experimental validation involved three subjects, each conducting 10 trials of indoor navigation, encompassing activities, such as walking, fast walking, jogging, running, sprinting, walking backward, jogging backward, and sidestepping, over a nearly 100 [m] path. The trained time series SVM classifier achieved a 90.04% average classification accuracy, resulting in an improvement in navigation accuracy by a factor of 250 as compared to a standalone INS and by a factor of 3 as compared to a traditional ZUPT-aided INS solution. Comparable improvements in the vertical drift of the navigation solution have been also demonstrated.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"3 ","pages":"32-42"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858374","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858374/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose an approach to enhance zero-velocity-update (ZUPT)-aided inertial navigation systems (INSs) with a time series support vector machine (SVM) forecaster algorithm. The approach is based on the inclusion in ZUPT algorithm the time correlation of velocity threshold values based on classification of 19 distinct pedestrian activities determined from a foot-mounted inertial measurement unit. The classification enhances the traditional ZUPT-aided INS by first optimizing the threshold in the detector called stance hypothesis optimal detection and second adjusting zero-velocity measurement variances for each categorized locomotion type. Experimental validation involved three subjects, each conducting 10 trials of indoor navigation, encompassing activities, such as walking, fast walking, jogging, running, sprinting, walking backward, jogging backward, and sidestepping, over a nearly 100 [m] path. The trained time series SVM classifier achieved a 90.04% average classification accuracy, resulting in an improvement in navigation accuracy by a factor of 250 as compared to a standalone INS and by a factor of 3 as compared to a traditional ZUPT-aided INS solution. Comparable improvements in the vertical drift of the navigation solution have been also demonstrated.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信