Efficient Automatic Design of IGBT Structural Parameters Using Differential Evolution and Machine Learning Model

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Qing Yao;Jing Chen;Kemeng Yang;Jiafei Yao;Jun Zhang;Yuxuan Dai;Weihua Tang;Bo Zhang;Yufeng Guo
{"title":"Efficient Automatic Design of IGBT Structural Parameters Using Differential Evolution and Machine Learning Model","authors":"Qing Yao;Jing Chen;Kemeng Yang;Jiafei Yao;Jun Zhang;Yuxuan Dai;Weihua Tang;Bo Zhang;Yufeng Guo","doi":"10.1109/TCAD.2024.3468011","DOIUrl":null,"url":null,"abstract":"Insulated gate bipolar transistors (IGBTs) are the key component in power electronics, and the intricate relationship between their performance and structural parameters poses a formidable challenge in the design process. This article proposes an automatic optimal design method for IGBT structural parameters to leverage the pretrained machine learning (ML) model to efficiently predict the initial IGBT device’s performance, followed by utilizing the differential evolution (DE) algorithm to automatically adjust structural parameters based on the disparity between predicted and expected device performance until the expected performance is achieved. The method is validated in the design of punch-through IGBTs (PT-IGBTs) and trench gate field-stop IGBTs (FS-IGBTs), and the performance of technology computer-aided design (TCAD) simulation of the designed device is similar to the target performance. In particular, the simulation results of the designed FS-IGBT are highly fitted to the datasheet of the commercial device, which verifies the generalizability and effectiveness of the method. In addition, comparative analyses with various algorithms show DE provides the fastest optimization and extraordinary robustness under the exact specifications. Crucially, the proposed design scheme aligns with semiconductor physics. The method simplifies IGBT design without the need for manual tuning and TCAD tool simulation.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 3","pages":"1059-1069"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10693555/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Insulated gate bipolar transistors (IGBTs) are the key component in power electronics, and the intricate relationship between their performance and structural parameters poses a formidable challenge in the design process. This article proposes an automatic optimal design method for IGBT structural parameters to leverage the pretrained machine learning (ML) model to efficiently predict the initial IGBT device’s performance, followed by utilizing the differential evolution (DE) algorithm to automatically adjust structural parameters based on the disparity between predicted and expected device performance until the expected performance is achieved. The method is validated in the design of punch-through IGBTs (PT-IGBTs) and trench gate field-stop IGBTs (FS-IGBTs), and the performance of technology computer-aided design (TCAD) simulation of the designed device is similar to the target performance. In particular, the simulation results of the designed FS-IGBT are highly fitted to the datasheet of the commercial device, which verifies the generalizability and effectiveness of the method. In addition, comparative analyses with various algorithms show DE provides the fastest optimization and extraordinary robustness under the exact specifications. Crucially, the proposed design scheme aligns with semiconductor physics. The method simplifies IGBT design without the need for manual tuning and TCAD tool simulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信