Robust Control of Modular Multiport DC–DC Converter

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shahriar Farajdadian;Amin Hajizadeh;Mohsen Soltani;Pavol Bauer;Hani Vahedi
{"title":"Robust Control of Modular Multiport DC–DC Converter","authors":"Shahriar Farajdadian;Amin Hajizadeh;Mohsen Soltani;Pavol Bauer;Hani Vahedi","doi":"10.1109/OJPEL.2025.3538992","DOIUrl":null,"url":null,"abstract":"This paper presents a robust control approach for non-isolated Modular Multiport Converters (MMPC) capable of integrating multiple energy sources and loads. The objective of this robust control approach is to mitigate cross-coupling challenges inherent in MIMO systems and effectively manage the parametric uncertainties associated with the converter as well as input and output disturbances. To achieve this objective, the paper begins with deriving the general nonlinear dynamic equations of an n-level step-up multi-port DC/DC converter (<inline-formula><tex-math>${MPDC}_{nL}^{SU}$</tex-math></inline-formula>). Subsequently, for a case study involving a 3-level step-up multi-port DC/DC converter (<inline-formula><tex-math>${MPDC}_{3L}^{SU}$</tex-math></inline-formula>) the equations are linearized to obtain the state-space model. Following the derivation of the converter model, a controller comprising two control loops is designed. The outer loop, responsible for regulating the voltage of output ports, is synthesized through a robust μ-optimal method using the <inline-formula><tex-math>${D} - \\mathcal{G} - \\mathcal{K}$</tex-math></inline-formula> iterative procedure, while the inner loop, responsible for regulating the current sharing among the parallel modules and generating PWM signals, is stabilized via multiple PI controllers. Finally, hardware-in-the-loop (HIL) test results derived from OPAL-RT 4610, and experimental results from a prototype are used to validate this control approach. The proposed decoupled mixed <inline-formula><tex-math>${\\mu }$</tex-math></inline-formula> synthesis method ensures robust performance and stability and results in a less conservative controller design for the <inline-formula><tex-math>${MPDC}_{3L}^{SU}$</tex-math></inline-formula>.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"300-313"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10878119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878119/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a robust control approach for non-isolated Modular Multiport Converters (MMPC) capable of integrating multiple energy sources and loads. The objective of this robust control approach is to mitigate cross-coupling challenges inherent in MIMO systems and effectively manage the parametric uncertainties associated with the converter as well as input and output disturbances. To achieve this objective, the paper begins with deriving the general nonlinear dynamic equations of an n-level step-up multi-port DC/DC converter (${MPDC}_{nL}^{SU}$). Subsequently, for a case study involving a 3-level step-up multi-port DC/DC converter (${MPDC}_{3L}^{SU}$) the equations are linearized to obtain the state-space model. Following the derivation of the converter model, a controller comprising two control loops is designed. The outer loop, responsible for regulating the voltage of output ports, is synthesized through a robust μ-optimal method using the ${D} - \mathcal{G} - \mathcal{K}$ iterative procedure, while the inner loop, responsible for regulating the current sharing among the parallel modules and generating PWM signals, is stabilized via multiple PI controllers. Finally, hardware-in-the-loop (HIL) test results derived from OPAL-RT 4610, and experimental results from a prototype are used to validate this control approach. The proposed decoupled mixed ${\mu }$ synthesis method ensures robust performance and stability and results in a less conservative controller design for the ${MPDC}_{3L}^{SU}$.
模块化多端口DC-DC变换器的鲁棒控制
本文提出了一种集成多电源和负载的非隔离模块化多端口转换器(MMPC)的鲁棒控制方法。这种鲁棒控制方法的目标是减轻MIMO系统固有的交叉耦合挑战,并有效地管理与转换器相关的参数不确定性以及输入和输出干扰。为了实现这一目标,本文首先推导了n级升压多端口DC/DC变换器(${MPDC}_{nL}^{SU}$)的一般非线性动力学方程。随后,对于涉及3级升压多端口DC/DC转换器(${MPDC}_{3L}^{SU}$)的案例研究,将方程线性化以获得状态空间模型。在推导变换器模型的基础上,设计了由两个控制回路组成的控制器。外环负责调节输出端电压,采用${D} - \mathcal{G} - \mathcal{K}$迭代法进行鲁棒μ最优合成,内环负责调节并联模块之间的电流共享并产生PWM信号,通过多个PI控制器进行稳定。最后,利用OPAL-RT 4610的硬件在环(HIL)测试结果和样机的实验结果验证了该控制方法。所提出的解耦混合${\mu}$综合方法保证了${MPDC}_{3L}^{SU}$的鲁棒性能和稳定性,并使控制器设计具有较小的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信