Recent Advances of High-Speed Short-Reach Optical Interconnects for Data Centers

Chongyun Zhang;Fuzhan Chen;Li Wang;Lin Wang;C. Patrick Yue
{"title":"Recent Advances of High-Speed Short-Reach Optical Interconnects for Data Centers","authors":"Chongyun Zhang;Fuzhan Chen;Li Wang;Lin Wang;C. Patrick Yue","doi":"10.1109/OJSSCS.2025.3526132","DOIUrl":null,"url":null,"abstract":"The ever-increasing demand for data centers and high-performance computing systems necessitate power-efficient, low-latency, and high-density interconnect design. This article reviews and analyzes recent design challenges and advances of optical transceiver, phase-locked loop (PLL), and clock and data recovery (CDR) for data center applications with a distance of ~100 m. At the transmitter side, nonidealities of the widely used vertical-cavity surface-emitting laser (VCSEL) are described, followed by reviews on existing compensation techniques for those nonidealities. At the receiver side, tradeoffs between gain, bandwidth (BW), noise, and linearity in PAM-4 optical receiver design are introduced, and design methods to improve the power efficiency and BW density are particularly discussed. Regarding clock generation which directly affects the performance of the transceiver, compact PLL design techniques focusing on in-band phase noise reduction and low-jitter performance are described. The signal integrity of PAM-4 signal becomes more susceptible to noise and jitter due to reduced signal level spacing. To address the uncorrelated jitter accumulation within the CDR which limits the signal quality and transmission distance, jitter compensation schemes in CDR design are described. And the clock distribution techniques for multilane transceiver systems are discussed.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"5 ","pages":"86-100"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824885","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10824885/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-increasing demand for data centers and high-performance computing systems necessitate power-efficient, low-latency, and high-density interconnect design. This article reviews and analyzes recent design challenges and advances of optical transceiver, phase-locked loop (PLL), and clock and data recovery (CDR) for data center applications with a distance of ~100 m. At the transmitter side, nonidealities of the widely used vertical-cavity surface-emitting laser (VCSEL) are described, followed by reviews on existing compensation techniques for those nonidealities. At the receiver side, tradeoffs between gain, bandwidth (BW), noise, and linearity in PAM-4 optical receiver design are introduced, and design methods to improve the power efficiency and BW density are particularly discussed. Regarding clock generation which directly affects the performance of the transceiver, compact PLL design techniques focusing on in-band phase noise reduction and low-jitter performance are described. The signal integrity of PAM-4 signal becomes more susceptible to noise and jitter due to reduced signal level spacing. To address the uncorrelated jitter accumulation within the CDR which limits the signal quality and transmission distance, jitter compensation schemes in CDR design are described. And the clock distribution techniques for multilane transceiver systems are discussed.
数据中心高速短距离光互连技术研究进展
对数据中心和高性能计算系统日益增长的需求要求节能、低延迟和高密度的互连设计。本文回顾和分析了距离为~100 m的数据中心应用的光收发器、锁相环(PLL)和时钟和数据恢复(CDR)的最新设计挑战和进展。在发射端,描述了广泛使用的垂直腔面发射激光器(VCSEL)的非理想性,然后对现有的非理想性补偿技术进行了综述。在接收端,介绍了PAM-4光接收机设计中增益、带宽、噪声和线性度之间的权衡,并重点讨论了提高功率效率和带宽密度的设计方法。针对直接影响收发器性能的时钟产生,介绍了以带内相位降噪和低抖动性能为重点的紧凑型锁相环设计技术。由于信号电平间距减小,PAM-4信号的信号完整性更容易受到噪声和抖动的影响。针对CDR内不相关的抖动积累限制了信号质量和传输距离的问题,介绍了CDR设计中的抖动补偿方案。讨论了多通道收发系统的时钟分配技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信