Mahajan Sagar Bhaskar;Seshagiri Rao Vemparala;Dhafer Almakhles;Kumaravel S.;Mahmoud F. Elmorshedy
{"title":"A Scalable High-Voltage Gain DC/DC Converter With Reduced Voltage Stress for DC Microgrid Integration","authors":"Mahajan Sagar Bhaskar;Seshagiri Rao Vemparala;Dhafer Almakhles;Kumaravel S.;Mahmoud F. Elmorshedy","doi":"10.1109/OJIES.2025.3536032","DOIUrl":null,"url":null,"abstract":"The conventional quadratic boost converter produces a high voltage gain. However, it has drawbacks, like switch voltage stress equal to the output voltage of the converter. This research introduced a novel approach: a scalable high-voltage gain converter strategically designed to address the voltage stress experienced by the switch and achieve a noteworthy reduction. This voltage stress reduction is applicable to all the stages of the proposed converter. It is worth highlighting that the converter ensures continuous input current and is configured with a common input and output ground, further enhancing its practicality. This study delves into an exhaustive steady-state analysis covering both the continuous and discontinuous conduction modes and the nonideal model. Furthermore, a comprehensive comparative analysis is presented, pitting the design and performance of the proposed converter against their recent high-gain counterparts. To evaluate dynamic performance, a small signal model is created. To confirm the dynamic and steady-state performance, a prototype of the proposed converter configuration is fabricated and tested, achieving a 48- to 650-V conversion and delivering 500 W of output power.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"277-289"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857397/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional quadratic boost converter produces a high voltage gain. However, it has drawbacks, like switch voltage stress equal to the output voltage of the converter. This research introduced a novel approach: a scalable high-voltage gain converter strategically designed to address the voltage stress experienced by the switch and achieve a noteworthy reduction. This voltage stress reduction is applicable to all the stages of the proposed converter. It is worth highlighting that the converter ensures continuous input current and is configured with a common input and output ground, further enhancing its practicality. This study delves into an exhaustive steady-state analysis covering both the continuous and discontinuous conduction modes and the nonideal model. Furthermore, a comprehensive comparative analysis is presented, pitting the design and performance of the proposed converter against their recent high-gain counterparts. To evaluate dynamic performance, a small signal model is created. To confirm the dynamic and steady-state performance, a prototype of the proposed converter configuration is fabricated and tested, achieving a 48- to 650-V conversion and delivering 500 W of output power.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.