Classification of Multi-Layer Tissue-Mimicking Dielectric Stacks From 2 to 20 GHz

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović
{"title":"Classification of Multi-Layer Tissue-Mimicking Dielectric Stacks From 2 to 20 GHz","authors":"Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović","doi":"10.1109/JERM.2024.3434519","DOIUrl":null,"url":null,"abstract":"Determination of the thickness, permittivity, and conductivity of tissue layers in the microwave region of the electromagnetic spectrum is relevant to a number of applications, such as breast-cancer imaging and non-invasive subcutaneous tissue thermometry. Many current characterization approaches are limited to one or two layers, often required to be aqueous. This paper presents simplified modeling of a stack of tissue layers as a series of complex impedance transmission lines in the 2–20 GHz decade. A near-field, broadband interrogation antenna designed for this frequency range and placed on the skin is validated with complex reflection coefficient measurements on seventeen different stacks of materials. Initial measurements are used to build a lookup table of features that are then used to classify three independent sets of follow-up measurements on the same stacks. After processing and consideration of very thin and very low loss materials, the error rates for classification are found to be between 5.9% and 14.7%. This confirms that features extracted from a simple, calibrated one-port broadband reflection coefficient measurement provide sufficient information to identify the composition of a layered stack, modeling tissue layers.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"36-41"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10620437/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Determination of the thickness, permittivity, and conductivity of tissue layers in the microwave region of the electromagnetic spectrum is relevant to a number of applications, such as breast-cancer imaging and non-invasive subcutaneous tissue thermometry. Many current characterization approaches are limited to one or two layers, often required to be aqueous. This paper presents simplified modeling of a stack of tissue layers as a series of complex impedance transmission lines in the 2–20 GHz decade. A near-field, broadband interrogation antenna designed for this frequency range and placed on the skin is validated with complex reflection coefficient measurements on seventeen different stacks of materials. Initial measurements are used to build a lookup table of features that are then used to classify three independent sets of follow-up measurements on the same stacks. After processing and consideration of very thin and very low loss materials, the error rates for classification are found to be between 5.9% and 14.7%. This confirms that features extracted from a simple, calibrated one-port broadband reflection coefficient measurement provide sufficient information to identify the composition of a layered stack, modeling tissue layers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信