Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rakesh Singh;Dharmendra Singh;Manoj Gupta
{"title":"Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection","authors":"Rakesh Singh;Dharmendra Singh;Manoj Gupta","doi":"10.1109/JERM.2024.3433008","DOIUrl":null,"url":null,"abstract":"Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"42-48"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10639360/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信