A Single Voltage Sensor Bypass Switch-Based Photovoltaic Fault Localization

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Ali Alhejab;Muhammad Abbasi;Shehab Ahmed
{"title":"A Single Voltage Sensor Bypass Switch-Based Photovoltaic Fault Localization","authors":"Ali Alhejab;Muhammad Abbasi;Shehab Ahmed","doi":"10.1109/JPHOTOV.2025.3530001","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) energy systems are becoming an important source of sustainable energy. However, undiscovered faults within these systems may cause significant efficiency reduction. Localizing these faults to the module level is important for a quick fault diagnosis and maintaining the overall system efficiency. This article presents a novel method to localize intrastring, line-ground, cross-string, and partial shading faults in an <inline-formula><tex-math>$N$</tex-math></inline-formula> × <inline-formula><tex-math>$M$</tex-math></inline-formula> PV system down to the module level. The approach utilizes a single voltage sensor in the combiner box of the PV system and <inline-formula><tex-math>$\\lceil N/2 \\rceil$</tex-math></inline-formula> bypass switches per string to bypass the connected PV modules during faults. The technique initially relies on identifying the faulty string. Once this string is determined, the voltage associated with each module in that string is found. Each module's voltage in that string is obtained by measuring the string voltage after bypassing each module corresponding to an activated switch. Subsequently, the resulting linear equations are solved to obtain the voltage of each module in the faulty string. The technique is verified using simulation and an experimental setup for a 5 x 4 small-size PV system. Experimental and simulation results demonstrate that the technique can accurately localize faulty modules with only <inline-formula><tex-math>$N$</tex-math></inline-formula> voltage samples of the faulty string. The proposed method is robust to variations in the maximum power point tracking algorithm, ensuring faults are localized effectively in real-time.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"362-372"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877760/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic (PV) energy systems are becoming an important source of sustainable energy. However, undiscovered faults within these systems may cause significant efficiency reduction. Localizing these faults to the module level is important for a quick fault diagnosis and maintaining the overall system efficiency. This article presents a novel method to localize intrastring, line-ground, cross-string, and partial shading faults in an $N$ × $M$ PV system down to the module level. The approach utilizes a single voltage sensor in the combiner box of the PV system and $\lceil N/2 \rceil$ bypass switches per string to bypass the connected PV modules during faults. The technique initially relies on identifying the faulty string. Once this string is determined, the voltage associated with each module in that string is found. Each module's voltage in that string is obtained by measuring the string voltage after bypassing each module corresponding to an activated switch. Subsequently, the resulting linear equations are solved to obtain the voltage of each module in the faulty string. The technique is verified using simulation and an experimental setup for a 5 x 4 small-size PV system. Experimental and simulation results demonstrate that the technique can accurately localize faulty modules with only $N$ voltage samples of the faulty string. The proposed method is robust to variations in the maximum power point tracking algorithm, ensuring faults are localized effectively in real-time.
基于单电压传感器旁路开关的光伏故障定位
光伏(PV)能源系统正在成为可持续能源的重要来源。然而,这些系统中未被发现的故障可能会导致效率显著降低。将故障定位到模块级别对于快速诊断故障、维护系统整体效率具有重要意义。本文提出了一种新的方法来定位$N$ × $M$光伏系统的串内、线地、串间和部分遮阳故障,直至模块级。该方法利用PV系统的组合盒中的单个电压传感器和每串$ $ rceil N/2 $ rceil旁路开关,在故障期间旁路连接的PV模块。该技术最初依赖于识别有问题的字符串。一旦确定了该字符串,就会找到与该字符串中每个模块相关联的电压。该串中每个模块的电压是通过绕过激活开关对应的每个模块后测量串电压获得的。然后,求解得到的线性方程,得到故障串中各模块的电压。该技术通过仿真和5 × 4小型光伏系统的实验装置进行了验证。实验和仿真结果表明,该方法只需对故障串进行N次电压采样,即可准确定位故障模块。该方法对最大功率点跟踪算法的变化具有较强的鲁棒性,保证了故障的实时有效定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信