Development of an Optical Library for Coevaporated CdSexTe1−x

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
António J. N. Oliveira;Bin Du;Kevin D. Dobson;Jennifer P. Teixeira;Maria R. P. Correia;Pedro M. P. Salomé;William N. Shafarman
{"title":"Development of an Optical Library for Coevaporated CdSexTe1−x","authors":"António J. N. Oliveira;Bin Du;Kevin D. Dobson;Jennifer P. Teixeira;Maria R. P. Correia;Pedro M. P. Salomé;William N. Shafarman","doi":"10.1109/JPHOTOV.2024.3507079","DOIUrl":null,"url":null,"abstract":"The conversion efficiency of CdTe solar cells may be improved by bandgap engineering, i.e., changing the bandgap value through the addition of Se in the absorber. The Se alloying enables a short-circuit current density improvement, as it leads to a bandgap energy value decrease. Furthermore, it has been associated with increased minority carrier lifetimes, assuring high open-circuit voltage values. An Se gradient profile control can further optimize the solar cell performance. Thus, an optical model baseline of the CdSe<italic><sub>x</sub></i>Te<sub>1−</sub><italic><sub>x</sub></i> (CST) compound was developed. Spectroscopic ellipsometry measurements were conducted to accurately extract the optical constants of ten CST layers deposited through coevaporation with <italic>x</i> varying from 0 to 1. Using the measured dielectric function spectra from the discrete CST layers with varying <italic>x</i>, and considering the composition-induced shift in the critical point energies, an energy-shift model was employed to develop the accurate optical library for the CST compound for any <italic>x</i> value to provide data for future modeling and optimization. The library accuracy was validated through optical simulations of the quantum efficiency of a graded CST solar cell using the finite-difference time-domain method by replicating the Se profile in the absorber layer measured through secondary ion mass spectrometry.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"252-260"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777397/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion efficiency of CdTe solar cells may be improved by bandgap engineering, i.e., changing the bandgap value through the addition of Se in the absorber. The Se alloying enables a short-circuit current density improvement, as it leads to a bandgap energy value decrease. Furthermore, it has been associated with increased minority carrier lifetimes, assuring high open-circuit voltage values. An Se gradient profile control can further optimize the solar cell performance. Thus, an optical model baseline of the CdSexTe1−x (CST) compound was developed. Spectroscopic ellipsometry measurements were conducted to accurately extract the optical constants of ten CST layers deposited through coevaporation with x varying from 0 to 1. Using the measured dielectric function spectra from the discrete CST layers with varying x, and considering the composition-induced shift in the critical point energies, an energy-shift model was employed to develop the accurate optical library for the CST compound for any x value to provide data for future modeling and optimization. The library accuracy was validated through optical simulations of the quantum efficiency of a graded CST solar cell using the finite-difference time-domain method by replicating the Se profile in the absorber layer measured through secondary ion mass spectrometry.
共蒸发CdSexTe1−x光学库的研制
带隙工程可以提高CdTe太阳能电池的转换效率,即通过在吸收剂中添加硒来改变带隙值。硒合金可以提高短路电流密度,因为它可以降低带隙能量值。此外,它还增加了少数载流子寿命,确保了高开路电压值。硒梯度轮廓控制可以进一步优化太阳能电池的性能。因此,开发了CdSexTe1−x (CST)化合物的光学模型基线。在x为0 ~ 1的条件下,利用椭偏光谱测量准确地提取了共蒸发沉积的10层CST层的光学常数。利用不同x值的CST离散层的介电函数光谱,考虑组分引起的临界点能量偏移,采用能量偏移模型建立了任意x值下CST化合物的精确光学库,为今后的建模和优化提供数据。利用有限差分时域方法模拟梯度CST太阳能电池的量子效率,通过复制二次离子质谱法测量的吸收层中的Se分布,验证了库的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信