{"title":"BEVCon: Advancing Bird's Eye View Perception With Contrastive Learning","authors":"Ziyang Leng;Jiawei Yang;Zhicheng Ren;Bolei Zhou","doi":"10.1109/LRA.2025.3540386","DOIUrl":null,"url":null,"abstract":"We present BEVCon, a simple yet effective contrastive learning framework designed to improve Bird's Eye View (BEV) perception in autonomous driving. BEV perception offers a top-down-view representation of the surrounding environment, making it crucial for 3D object detection, segmentation, and trajectory prediction tasks. While prior work has primarily focused on enhancing BEV encoders and task-specific heads, we address the underexplored potential of representation learning in BEV models. BEVCon introduces two contrastive learning modules: an instance feature contrast module for refining BEV features and a perspective view contrast module that enhances the image backbone. The dense contrastive learning designed on top of detection losses leads to improved feature representations across both the BEV encoder and the backbone. Extensive experiments on the nuScenes dataset demonstrate that BEVCon achieves consistent performance gains, achieving up to +2.4% mAP improvement over state-of-the-art baselines. Our results highlight the critical role of representation learning in BEV perception and offer a complementary avenue to conventional task-specific optimizations.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3158-3165"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10878497/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present BEVCon, a simple yet effective contrastive learning framework designed to improve Bird's Eye View (BEV) perception in autonomous driving. BEV perception offers a top-down-view representation of the surrounding environment, making it crucial for 3D object detection, segmentation, and trajectory prediction tasks. While prior work has primarily focused on enhancing BEV encoders and task-specific heads, we address the underexplored potential of representation learning in BEV models. BEVCon introduces two contrastive learning modules: an instance feature contrast module for refining BEV features and a perspective view contrast module that enhances the image backbone. The dense contrastive learning designed on top of detection losses leads to improved feature representations across both the BEV encoder and the backbone. Extensive experiments on the nuScenes dataset demonstrate that BEVCon achieves consistent performance gains, achieving up to +2.4% mAP improvement over state-of-the-art baselines. Our results highlight the critical role of representation learning in BEV perception and offer a complementary avenue to conventional task-specific optimizations.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.