Neophytos Charalambides;Hessam Mahdavifar;Alfred O. Hero
{"title":"Generalized Fractional Repetition Codes for Binary Coded Computations","authors":"Neophytos Charalambides;Hessam Mahdavifar;Alfred O. Hero","doi":"10.1109/TIT.2025.3529680","DOIUrl":null,"url":null,"abstract":"This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a computationally efficient coding method which overcomes the drawbacks of the Fractional Repetition Coding gradient coding method proposed by Tandon et al., and can also be leveraged by coded computing networks whose servers are of heterogeneous nature. Specifically, we propose a construction for fractional repetition gradient coding; while ensuring that the generator matrix remains close to perfectly balanced for any set of coding parameters, as well as a low complexity decoding step. The proposed binary encoding avoids operations over the real and complex numbers which inherently introduce numerical and rounding errors, thereby enabling accurate distributed encodings of the partial gradients. We then make connections between gradient coding and coded matrix multiplication. Specifically, we show that any gradient coding scheme can be extended to coded matrix multiplication. Furthermore, we show how the proposed binary gradient coding scheme can be used to construct two different coded matrix multiplication schemes, each achieving different trade-offs.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 3","pages":"2170-2194"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10841430/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a computationally efficient coding method which overcomes the drawbacks of the Fractional Repetition Coding gradient coding method proposed by Tandon et al., and can also be leveraged by coded computing networks whose servers are of heterogeneous nature. Specifically, we propose a construction for fractional repetition gradient coding; while ensuring that the generator matrix remains close to perfectly balanced for any set of coding parameters, as well as a low complexity decoding step. The proposed binary encoding avoids operations over the real and complex numbers which inherently introduce numerical and rounding errors, thereby enabling accurate distributed encodings of the partial gradients. We then make connections between gradient coding and coded matrix multiplication. Specifically, we show that any gradient coding scheme can be extended to coded matrix multiplication. Furthermore, we show how the proposed binary gradient coding scheme can be used to construct two different coded matrix multiplication schemes, each achieving different trade-offs.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.