{"title":"Top-Performing Photovoltaic Cells Compared to the Shockley–Queisser Limit","authors":"Camden Kasik;Marko Jošt;Ishwor Khatri;Marko Topič;James Sites","doi":"10.1109/JPHOTOV.2025.3533883","DOIUrl":null,"url":null,"abstract":"Top-performing single-junction and two-terminal tandem devices that include at least one polycrystalline cell are compared with each other and their ideal limits. The parameters of open-circuit voltage, short-circuit current, and fill-factor are individually compared to the Shockley–Queisser limit to investigate where different technologies have room to improve. Technologies, such as silicon and cadmium telluride have the most room for improvement in open-circuit voltage currently utilizing 87% and 81% of their maxima, respectively. Detailed diode and fill-factor loss analysis is presented for single-junction devices to give further insight on how they compare and where efficiency is lost. Single-crystal technologies demonstrate a fill-factor closer to the Shockley–Queisser limit than polycrystalline devices. The high diode quality factor of polycrystalline devices is the leading cause of the decreased fill-factor. Similar analysis on tandem cells with at least one thin-film cell shows that although their efficiency exceeds that of the single-junction cells, the fraction of their ideal efficiency is smaller. By comparing parameters to the Shockley–Queisser limit, it becomes clearer where certain technologies have the potential for improvement.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"268-273"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877778/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Top-performing single-junction and two-terminal tandem devices that include at least one polycrystalline cell are compared with each other and their ideal limits. The parameters of open-circuit voltage, short-circuit current, and fill-factor are individually compared to the Shockley–Queisser limit to investigate where different technologies have room to improve. Technologies, such as silicon and cadmium telluride have the most room for improvement in open-circuit voltage currently utilizing 87% and 81% of their maxima, respectively. Detailed diode and fill-factor loss analysis is presented for single-junction devices to give further insight on how they compare and where efficiency is lost. Single-crystal technologies demonstrate a fill-factor closer to the Shockley–Queisser limit than polycrystalline devices. The high diode quality factor of polycrystalline devices is the leading cause of the decreased fill-factor. Similar analysis on tandem cells with at least one thin-film cell shows that although their efficiency exceeds that of the single-junction cells, the fraction of their ideal efficiency is smaller. By comparing parameters to the Shockley–Queisser limit, it becomes clearer where certain technologies have the potential for improvement.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.