Wei-Qi Fan , Yi Liao , Xiao-Dong Ma , Hao-Lin Wang
{"title":"Baryon number violating hydrogen decay","authors":"Wei-Qi Fan , Yi Liao , Xiao-Dong Ma , Hao-Lin Wang","doi":"10.1016/j.physletb.2025.139335","DOIUrl":null,"url":null,"abstract":"<div><div>Most studies on baryon number violating (BNV) processes in the literature focus on free or bound nucleons in nuclei, with limited attention given to the decay of bound atoms. Given that hydrogen is the most abundant atom in the universe, it is particularly intriguing to investigate the decay of hydrogen atom as a means to probe BNV interactions. In this study, for the first time, we employ a robust effective field theory (EFT) approach to estimate the decay widths of two-body decays of hydrogen atom into standard model particles, by utilizing the constraints on the EFT cutoff scale derived from conventional nucleon decay processes. We integrate low energy effective field theory (LEFT), chiral perturbation theory (ChPT), and standard model effective field theory (SMEFT) to formulate the decay widths in terms of the LEFT and SMEFT Wilson coefficients (WCs), respectively. By applying the bounds on the WCs from conventional nucleon decays, we provide a conservative estimate on hydrogen BNV decays. Our findings indicate that the bounds on the inverse partial widths of all dominant two-body decays exceed 10<sup>44</sup> years. Among these modes, the least constrained diphoton decay <span><math><mi>H</mi><mo>→</mo><mi>γ</mi><mi>γ</mi></math></span> might be astrophysically interesting, although the monochromatic photon signal from our Sun is difficult to detect with current near-Earth telescopes.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"862 ","pages":"Article 139335"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325000954","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Most studies on baryon number violating (BNV) processes in the literature focus on free or bound nucleons in nuclei, with limited attention given to the decay of bound atoms. Given that hydrogen is the most abundant atom in the universe, it is particularly intriguing to investigate the decay of hydrogen atom as a means to probe BNV interactions. In this study, for the first time, we employ a robust effective field theory (EFT) approach to estimate the decay widths of two-body decays of hydrogen atom into standard model particles, by utilizing the constraints on the EFT cutoff scale derived from conventional nucleon decay processes. We integrate low energy effective field theory (LEFT), chiral perturbation theory (ChPT), and standard model effective field theory (SMEFT) to formulate the decay widths in terms of the LEFT and SMEFT Wilson coefficients (WCs), respectively. By applying the bounds on the WCs from conventional nucleon decays, we provide a conservative estimate on hydrogen BNV decays. Our findings indicate that the bounds on the inverse partial widths of all dominant two-body decays exceed 1044 years. Among these modes, the least constrained diphoton decay might be astrophysically interesting, although the monochromatic photon signal from our Sun is difficult to detect with current near-Earth telescopes.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.