Volatiles produced by bacteria in the honeydew of cotton aphids mediate prey location by Hippodamia variegata (Coleoptera: Coccinellidae)

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Panjing Liu , Tao Zhang , Yu Gao , Xiaofang Zhang , Hongyi Wei , Yanhui Lu
{"title":"Volatiles produced by bacteria in the honeydew of cotton aphids mediate prey location by Hippodamia variegata (Coleoptera: Coccinellidae)","authors":"Panjing Liu ,&nbsp;Tao Zhang ,&nbsp;Yu Gao ,&nbsp;Xiaofang Zhang ,&nbsp;Hongyi Wei ,&nbsp;Yanhui Lu","doi":"10.1016/j.biocontrol.2025.105728","DOIUrl":null,"url":null,"abstract":"<div><div>Honeydew produced by insects is not only recognized as a nutrient-rich substance for natural enemies, influencing their survival, development, and reproduction but also a source of volatiles that regulate the foraging behavior of natural enemies. <em>Hippodamia variegata</em> (Coleoptera: Coccinellidae) is an effective predatory natural enemy of <em>Aphis gossypii</em> (Hemiptera: Aphididae) in Xinjiang, China. However, the functional significance of honeydew volatiles from <em>A. gossypii</em> for <em>H. variegata</em> remains largely unclear. Here we reported that <em>H. variegata</em> adults were attracted by the crude honeydew of <em>A. gossypii</em>, and we identified fifteen volatiles using headspace solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS). Electroantennogram (EAG) results showed that <em>H. variegata</em> exhibits a significant dose-dependent response to nine volatiles from honeydew. Y-tube olfactometer and cage predation tests showed that 1-heptanol, 2-ethyl-1-hexanol, 2-phenylethanol, and 2-methyl-1-propanol attracted <em>H. variegata</em> adults. Furthermore, our study also elucidated the relationship between honeydew compounds and microorganisms. The findings demonstrated that the compounds 2-ethyl-1-hexanol, 2-phenylethanol, and 2-methyl-1-propanol originate from five distinct cultivable bacteria identified using the 16S rRNA markers. Our results provide potential eco-friendly strategies for enhancing biological control of aphids.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"202 ","pages":"Article 105728"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000386","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Honeydew produced by insects is not only recognized as a nutrient-rich substance for natural enemies, influencing their survival, development, and reproduction but also a source of volatiles that regulate the foraging behavior of natural enemies. Hippodamia variegata (Coleoptera: Coccinellidae) is an effective predatory natural enemy of Aphis gossypii (Hemiptera: Aphididae) in Xinjiang, China. However, the functional significance of honeydew volatiles from A. gossypii for H. variegata remains largely unclear. Here we reported that H. variegata adults were attracted by the crude honeydew of A. gossypii, and we identified fifteen volatiles using headspace solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS). Electroantennogram (EAG) results showed that H. variegata exhibits a significant dose-dependent response to nine volatiles from honeydew. Y-tube olfactometer and cage predation tests showed that 1-heptanol, 2-ethyl-1-hexanol, 2-phenylethanol, and 2-methyl-1-propanol attracted H. variegata adults. Furthermore, our study also elucidated the relationship between honeydew compounds and microorganisms. The findings demonstrated that the compounds 2-ethyl-1-hexanol, 2-phenylethanol, and 2-methyl-1-propanol originate from five distinct cultivable bacteria identified using the 16S rRNA markers. Our results provide potential eco-friendly strategies for enhancing biological control of aphids.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信