{"title":"Dynamic boundary flux-driven shallow waters: Insights from a dissipative-dispersive system","authors":"Neng Zhu , Kun Zhao","doi":"10.1016/j.jde.2025.02.055","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with a shallow water system under dynamic boundary conditions:<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><mi>u</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><mi>ϵ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>w</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><mi>μ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></math></span></span></span> By constructing suitable relative entropy functionals, it is shown that under certain conditions on <span><math><mi>α</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, classical solutions with potentially large energy exist globally in time, and the solutions converge to the equilibria determined by the initial and boundary conditions. The results hold for all values of <span><math><mi>m</mi><mo>⩾</mo><mn>1</mn></math></span> when <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>, and for <span><math><mi>m</mi><mo>⩾</mo><mn>2</mn></math></span> when <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>. The analytic technique for studying the dispersive-regularized system (<span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>) can be of independent interest and adaptable for other PDE models with similar structure.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 566-611"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001743","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with a shallow water system under dynamic boundary conditions: By constructing suitable relative entropy functionals, it is shown that under certain conditions on and , classical solutions with potentially large energy exist globally in time, and the solutions converge to the equilibria determined by the initial and boundary conditions. The results hold for all values of when , and for when . The analytic technique for studying the dispersive-regularized system () can be of independent interest and adaptable for other PDE models with similar structure.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics