Wojciech Zgłobicki, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis
{"title":"Impact of traffic and other sources on heavy metal pollution of urban soils (Lublin, Poland)","authors":"Wojciech Zgłobicki, Małgorzata Telecka, Paulina Hałas, Małgorzata Bis","doi":"10.1016/j.enmm.2025.101058","DOIUrl":null,"url":null,"abstract":"<div><div>Information on the heavy metals content in urban soils is important for a comprehensive assessment of environmental pollution. A significant<!--> <!-->source of soil pollution can be traffic-related emissions. The objective of the study was to assess the spatial pattern, sources and level of soil pollution in medium-sized city (Lublin, E Poland). Concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn were determined in 62 samples of road dust and 90 soil samples. We applied<!--> <!-->following: geochemical indices to determine the degree of pollution: (i) geoaccumulation index, (ii) pollution index and (iii) index of ecological risk factor. PCA and CA were also used to assess sources of pollution. Geochemical indices showed<!--> <!-->medium to high pollution of dust and roadside soils<!--> <!-->by Cu and Zn and high for Cd, Cu and Zn in post-industrial soils. The results of the statistical analyses indicated the same pollution sources for road dust and roadside soils. It is represented by transport-related emissions. There is no statistical relationship between the concentration of heavy metals in road dust and roadside soil pollution due to the nature of their accumulation − long-lasting in the case of soils. The air transport of heavy metals is carried out over a short distance. Elevated concentrations are found near the sources of the pollutants. Residential soils are not polluted by heavy metals.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101058"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Information on the heavy metals content in urban soils is important for a comprehensive assessment of environmental pollution. A significant source of soil pollution can be traffic-related emissions. The objective of the study was to assess the spatial pattern, sources and level of soil pollution in medium-sized city (Lublin, E Poland). Concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn were determined in 62 samples of road dust and 90 soil samples. We applied following: geochemical indices to determine the degree of pollution: (i) geoaccumulation index, (ii) pollution index and (iii) index of ecological risk factor. PCA and CA were also used to assess sources of pollution. Geochemical indices showed medium to high pollution of dust and roadside soils by Cu and Zn and high for Cd, Cu and Zn in post-industrial soils. The results of the statistical analyses indicated the same pollution sources for road dust and roadside soils. It is represented by transport-related emissions. There is no statistical relationship between the concentration of heavy metals in road dust and roadside soil pollution due to the nature of their accumulation − long-lasting in the case of soils. The air transport of heavy metals is carried out over a short distance. Elevated concentrations are found near the sources of the pollutants. Residential soils are not polluted by heavy metals.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation