Alexander George , Naghmeh Akhavan , Bradford E. Peercy , Michelle Starz-Gaiano
{"title":"Chemotaxis of Drosophila border cells is modulated by tissue geometry through dispersion of chemoattractants","authors":"Alexander George , Naghmeh Akhavan , Bradford E. Peercy , Michelle Starz-Gaiano","doi":"10.1016/j.isci.2025.111959","DOIUrl":null,"url":null,"abstract":"<div><div>Migratory cells respond to graded concentrations of diffusible chemoattractants <em>in vitro</em>, but how complex tissue geometries <em>in vivo</em> impact chemotaxis is poorly understood. To address this, we studied the Drosophila border cells. Live-imaged border cells varied in their chemotactic migration speeds, which correlated positionally with distinct architectures. We then developed a reduced mathematical model to determine how chemoattractant distribution is affected by tissue architecture. Larger extracellular volumes locally dampened the chemoattractant gradient and, when coupled with an agent-based motion of the cluster, reduced cell speeds. This suggests that chemoattractant levels vary by tissue architectures, informing cell migration behaviors locally, which we tested <em>in vivo.</em> Genetically elevating chemoattractant levels slowed migration in specific architectural regions, while mutants with spacious tissue structure rescued defects from high chemoattractant levels, promoting punctual migration. Our results highlight the interplay between tissue geometry and the local distribution of signaling molecules to orchestrate cell migration.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 3","pages":"Article 111959"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225002196","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Migratory cells respond to graded concentrations of diffusible chemoattractants in vitro, but how complex tissue geometries in vivo impact chemotaxis is poorly understood. To address this, we studied the Drosophila border cells. Live-imaged border cells varied in their chemotactic migration speeds, which correlated positionally with distinct architectures. We then developed a reduced mathematical model to determine how chemoattractant distribution is affected by tissue architecture. Larger extracellular volumes locally dampened the chemoattractant gradient and, when coupled with an agent-based motion of the cluster, reduced cell speeds. This suggests that chemoattractant levels vary by tissue architectures, informing cell migration behaviors locally, which we tested in vivo. Genetically elevating chemoattractant levels slowed migration in specific architectural regions, while mutants with spacious tissue structure rescued defects from high chemoattractant levels, promoting punctual migration. Our results highlight the interplay between tissue geometry and the local distribution of signaling molecules to orchestrate cell migration.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.