Engineering PAMAM dendrimers for optimized drug delivery

Amin Aleebrahim Dehkordi , Shirin Mollazadeh , Amirreza Talaie , Mostafa Yazdimamaghani
{"title":"Engineering PAMAM dendrimers for optimized drug delivery","authors":"Amin Aleebrahim Dehkordi ,&nbsp;Shirin Mollazadeh ,&nbsp;Amirreza Talaie ,&nbsp;Mostafa Yazdimamaghani","doi":"10.1016/j.nwnano.2025.100094","DOIUrl":null,"url":null,"abstract":"<div><div>Dendrimers, first introduced by Fritz Vögtle in 1978, have emerged as promising nanocarriers for drug delivery due to their unique branched architecture, large internal cavities, and numerous surface amine groups. These dendrimers efficiently load various drugs through electrostatic interactions, covalent bonding, or encapsulation, owing to their high density of terminal amine groups. However, the inherent cationic nature of PAMAM dendrimers can lead to cytotoxicity and limited systemic circulation due to interactions with negatively charged biomolecules. To address these limitations, surface modification strategies have been developed to enhance targeting, trigger controlled drug release, and decrease cytotoxicity. This review critically examines recent advancements in engineering PAMAM dendrimers for improved drug delivery, focusing on strategies to increase drug loading capacity, achieve tissue-specific targeting, reduce toxicity, and enable stimuli-responsive release. Furthermore, this review evaluates the challenges and future prospects of engineered PAMAM dendrimer-based drug delivery systems to provide a comprehensive roadmap for advancing these platforms in nanomedicine and targeted therapeutics.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100094"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dendrimers, first introduced by Fritz Vögtle in 1978, have emerged as promising nanocarriers for drug delivery due to their unique branched architecture, large internal cavities, and numerous surface amine groups. These dendrimers efficiently load various drugs through electrostatic interactions, covalent bonding, or encapsulation, owing to their high density of terminal amine groups. However, the inherent cationic nature of PAMAM dendrimers can lead to cytotoxicity and limited systemic circulation due to interactions with negatively charged biomolecules. To address these limitations, surface modification strategies have been developed to enhance targeting, trigger controlled drug release, and decrease cytotoxicity. This review critically examines recent advancements in engineering PAMAM dendrimers for improved drug delivery, focusing on strategies to increase drug loading capacity, achieve tissue-specific targeting, reduce toxicity, and enable stimuli-responsive release. Furthermore, this review evaluates the challenges and future prospects of engineered PAMAM dendrimer-based drug delivery systems to provide a comprehensive roadmap for advancing these platforms in nanomedicine and targeted therapeutics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信