Raster-Atomic force nanolithography: New insights towards the fabrication of 3D nanostructures on PMMA and Silicon Nitride

Lorenzo Vincenti , Paolo Pellegrino , Isabella Farella , Mariafrancesca Cascione , Valeria De Matteis , Fabio Quaranta , Rosaria Rinaldi
{"title":"Raster-Atomic force nanolithography: New insights towards the fabrication of 3D nanostructures on PMMA and Silicon Nitride","authors":"Lorenzo Vincenti ,&nbsp;Paolo Pellegrino ,&nbsp;Isabella Farella ,&nbsp;Mariafrancesca Cascione ,&nbsp;Valeria De Matteis ,&nbsp;Fabio Quaranta ,&nbsp;Rosaria Rinaldi","doi":"10.1016/j.nwnano.2025.100088","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of nanoscience has driven significant interest in manipulating materials at the nanoscale, a capability critical to diverse High-tech fields. Achievements in nanoscale analysis and nanofabrication have facilitated practical applications across a range of fields, including nanoelectronics, nanofluidics, drug delivery, optical and plasmonic devices, and biosensing. Nonetheless, conventional top-down fabrication techniques, such as electron beam lithography, focused ion beam lithography, soft lithography, and nanoimprint lithography, are frequently constrained by factors such as cost, scalability, and manufacturing complexity. Scanning Probe-based Lithography (SPL) has recently emerged as a promising alternative, offering precise nanostructure fabrication and immediate characterization in ambient conditions. This paper focuses on Raster-Atomic Force nanolithography (R-AFL), highlighting its capability for fabricating 3D nanostructures on Polymethyl methacrylate (PMMA) with minimal process steps. By coupling this technique with a simple wet etching process using Methyl Isobutyl Ketone (MIBK) and 2-propanol (IPA), enhanced resolution and quality of the nanostructure are achieved. Furthermore, the nanostructures are successfully transferred to a Silicon Nitride (Si<sub>x</sub>N<sub>y</sub>) substrate via plasma etching, demonstrating the versatility of the approach. This combination of AFM-based lithography, wet etching, and plasma transfer represents an innovative and efficient method for creating nanopatterned surfaces on both soft and hard substrates, addressing key limitations of conventional nanofabrication techniques.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of nanoscience has driven significant interest in manipulating materials at the nanoscale, a capability critical to diverse High-tech fields. Achievements in nanoscale analysis and nanofabrication have facilitated practical applications across a range of fields, including nanoelectronics, nanofluidics, drug delivery, optical and plasmonic devices, and biosensing. Nonetheless, conventional top-down fabrication techniques, such as electron beam lithography, focused ion beam lithography, soft lithography, and nanoimprint lithography, are frequently constrained by factors such as cost, scalability, and manufacturing complexity. Scanning Probe-based Lithography (SPL) has recently emerged as a promising alternative, offering precise nanostructure fabrication and immediate characterization in ambient conditions. This paper focuses on Raster-Atomic Force nanolithography (R-AFL), highlighting its capability for fabricating 3D nanostructures on Polymethyl methacrylate (PMMA) with minimal process steps. By coupling this technique with a simple wet etching process using Methyl Isobutyl Ketone (MIBK) and 2-propanol (IPA), enhanced resolution and quality of the nanostructure are achieved. Furthermore, the nanostructures are successfully transferred to a Silicon Nitride (SixNy) substrate via plasma etching, demonstrating the versatility of the approach. This combination of AFM-based lithography, wet etching, and plasma transfer represents an innovative and efficient method for creating nanopatterned surfaces on both soft and hard substrates, addressing key limitations of conventional nanofabrication techniques.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信